【題目】已知為偶函數(shù).
(1)求實(shí)數(shù)的值,并寫出在區(qū)間上的增減性和值域(不需要證明);
(2)令,其中,若對任意、,總有,求的取值范圍;
(3)令,若對任意、,總有,求實(shí)數(shù)的取值范圍.
【答案】(1),在上是增函數(shù),值域?yàn)?/span>;(2);(3).
【解析】
(1)利用偶函數(shù)的定義,作差變形可求出,結(jié)合函數(shù)的解析式寫出該函數(shù)在區(qū)間上的單調(diào)性,并利用單調(diào)性得出函數(shù)在該區(qū)間上的值域;
(2)由題意得出,且,換元,構(gòu)造函數(shù),由可得出二次函數(shù)的對稱軸,分析函數(shù)在區(qū)間上的單調(diào)性,求出函數(shù)的最大值和最小值,結(jié)合不等式求出實(shí)數(shù)的取值范圍;
(3)由可得出,求出不等式右邊代數(shù)式的取值范圍,可得出實(shí)數(shù)的取值范圍.
(1)函數(shù)為偶函數(shù),則,
即,
由題意知,對任意的,恒成立,則,,
,該函數(shù)在區(qū)間上為增函數(shù),且,
所以,函數(shù)在區(qū)間上的值域?yàn)?/span>;
(2)由題意知,,且,
設(shè),,則,且,
設(shè)函數(shù),則,二次函數(shù)的對稱軸為直線.
,,則函數(shù)在區(qū)間上單調(diào)遞增,
則,,
,解得,
,,因此,實(shí)數(shù)的取值范圍是;
(3),
,
,
由,
可得,
,
由于函數(shù)在上單調(diào)遞增,且,,
,,又,,
所以,,因此,實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市小型機(jī)動車駕照“科二”考試中共有5項(xiàng)考察項(xiàng)目,分別記作①,②,③,④,⑤.
(1)某教練將所帶10名學(xué)員“科二”模擬考試成績進(jìn)行統(tǒng)計(jì)(如圖1所示),并打算從恰有2項(xiàng)成績不合格的學(xué)員中任意抽出2人進(jìn)行補(bǔ)測(只測不合格的項(xiàng)目),求補(bǔ)測項(xiàng)目種類不超過3項(xiàng)的概率;
(2)如圖2,某次模擬演練中,教練要求學(xué)員甲倒車并轉(zhuǎn)向90°,在汽車邊緣不壓射線AC與射線BD的前提下,將汽車駛?cè)胫付ǖ耐\囄?/span>. 根據(jù)經(jīng)驗(yàn),學(xué)員甲轉(zhuǎn)向90°后可使車尾邊緣完全落在線段CD,且位于CD內(nèi)各處的機(jī)會相等.若CA="BD=0.3m," AB="2.4m." 汽車寬度為1.8m, 求學(xué)員甲能按教練要求完成任務(wù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù),且.
(Ⅰ)求的定義域;
(Ⅱ)判斷的奇偶性并予以證明;
(Ⅲ)當(dāng)時,求使的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個幾何體的平面展開圖,其中四邊形為正方形,,,,為全等的等邊三角形,、分別為、的中點(diǎn),在此幾何體中,下列結(jié)論中正確的個數(shù)有()
①平面平面
②直線與直線是異面直線
③直線與直線共面
④面與面的交線與平行
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個工廠生產(chǎn)某種產(chǎn)品每年需要固定投資100萬元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬元,年產(chǎn)量為()件.當(dāng)時,年銷售總收人為()萬元;當(dāng)時,年銷售總收人為萬元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤為萬元.(年利潤=年銷售總收入一年總投資)
(1)求(萬元)與(件)的函數(shù)關(guān)系式;
(2)當(dāng)該工廠的年產(chǎn)量為多少件時,所得年利潤最大?最大年利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某國際性會議紀(jì)念章的一特許專營店銷售紀(jì)念章,每枚進(jìn)價為5元,同時每銷售一枚這種紀(jì)念章還需向該會議的組織委員會交特許經(jīng)營管理費(fèi)2元,預(yù)計(jì)這種紀(jì)念章以每枚20元的價格銷售時,該店一年可銷售2000枚,經(jīng)過市場調(diào)研發(fā)現(xiàn),每枚紀(jì)念章的銷售價格在每枚20元的基礎(chǔ)上,每減少一元則增加銷售400枚,而每增加一元則減少銷售100枚,現(xiàn)設(shè)每枚紀(jì)念章的銷售價格為元(每枚的銷售價格應(yīng)為正整數(shù)).
(1)寫出該特許專營店一年內(nèi)銷售這種紀(jì)念章所獲得的利潤(元)與每枚紀(jì)念章的銷售價格的函數(shù)關(guān)系式;
(2)當(dāng)每枚紀(jì)念章銷售價格為多少元時,該特許專營店一年內(nèi)利潤(元)最大,并求出這個最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R
(1)求A∪B;
(2)若,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn))處的切線方程是.
(I)求的值及函數(shù)的最大值
(Ⅱ)若實(shí)數(shù)滿足.
()證明:;
()若,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com