已知各項(xiàng)均為正數(shù)的數(shù)列前n項(xiàng)和為,首項(xiàng)為,且等差數(shù)列。

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,設(shè),求數(shù)列的前n項(xiàng)和.

解(1)由題意知   ………………1分

當(dāng)時(shí),

當(dāng)時(shí),

兩式相減得………………3分

整理得:  ……………………4分

∴數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列。

……………………5分

(2)

,……………………6分

 ①

 ②

①-②得  ………………9分

          

           .………………………………………………………11分

…………………………………………………………………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較數(shù)學(xué)公式數(shù)學(xué)公式的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:青島二模 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測(cè)試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年高考復(fù)習(xí)方案配套課標(biāo)版月考數(shù)學(xué)試卷(二)(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案