己知函數(shù)f(x)=ex,xR.
(1)若直線y=kx+1與f(x)的反函數(shù)圖象相切,求實數(shù)k的值;
(2)設x﹥0,討論曲線y=f(x)與曲線y=mx2(m﹥0)公共點的個數(shù);
(3)設,比較與的大小并說明理由。
(1);(2)當m時,有0個公共點;當m=,有1個公共點;當m有2個公共點;(3).
【解析】
試題分析:(1)f (x)的反函數(shù). 直線y=kx+1恒過點P(0,1),該題即為過某點與曲線相切的問題,這類題一定要先設出切點的坐標,然后求導便可得方程組,解方程組即可得k的值.
(2)曲線y=f(x)與曲線 的公共點個數(shù)即方程 根的個數(shù). 而這個方程可化為
,令,結(jié)合的圖象即可知道取不同值時,方程的根的個數(shù).
(3) 比較兩個式子的大小的一般方法是用比較法,即作差,變形,判斷符號.
結(jié)合這個式子的特征可看出,我們可研究函數(shù)的函數(shù)值的符號,而用導數(shù)即可解決.
試題解析:(1)f(x)的反函數(shù).設直線y=kx+1與相切于點,則.所以 4分
(2)當x>0,m>0時,曲線y=f(x)與曲線的公共點個數(shù)即方程根的個數(shù). 5分
由,令,
則 在上單調(diào)遞減,這時; 在上單調(diào)遞增,這時;所以是的最小值. 6分
所以對曲線y=f(x)與曲線公共點的個數(shù),討論如下:
當m時,有0個公共點;
當m=,有1個公共點;
當m有2個公共點; 8分
(3)設
9分
令,則,
的導函數(shù),所以在上單調(diào)遞增,且,因此,在上單調(diào)遞增,而,所以在上. 12分
當時,且即,
所以當時, 14分
考點:1、導數(shù)的應用;2、方程的根;3、比較大小.
科目:高中數(shù)學 來源: 題型:
a |
x |
2a |
x2+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
a | x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
2 |
1 |
e |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源:不詳 題型:解答題
1 |
2 |
1 |
e |
1 |
2 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com