分析:根據(jù)所給的含有前n項(xiàng)和與項(xiàng)的關(guān)系式,仿寫一個(gè)式子,兩個(gè)式子相減,得到兩項(xiàng)之間的關(guān)系,得到數(shù)列是一個(gè)等差數(shù)列,求出首項(xiàng),根據(jù)三項(xiàng)成等比數(shù)列,去掉不合題意的首項(xiàng),得到通項(xiàng).
解答:解:∵6Sn=an2+3an+2,①
∴6Sn+1=an+12+3an+1+2,②
②-①得到6an+1=an+12+3an+1-an2-3an
∴3(an+1+an)=(an+1-an)(an+1+an)
∵正項(xiàng)數(shù)列{an},
∴an+1-an=3或an+1+an=0
∴數(shù)列是一個(gè)公差為3的等差數(shù)列,
∵6a1=a12+3a1+2
∴a1=1或2,
∵a1,a3,a11成等比數(shù)列
∴當(dāng)a1=1時(shí),1,7,31不成等比數(shù)列,
首項(xiàng)等于2時(shí),2,8,32成等比數(shù)列,
∴首項(xiàng)等于2,
∴數(shù)列的通項(xiàng)是an=3n-1
故答案為:an=3n-1
點(diǎn)評(píng):本題考查求數(shù)列的通項(xiàng),本題解題的關(guān)鍵是仿寫一個(gè)式子,兩個(gè)式子相減得到只含有通項(xiàng)的式子,在仿寫的時(shí)候注意仿寫一個(gè)n+1的式子,不然要討論n的取值.