【題目】已知函數(shù).

(1)若,求函數(shù)處的切線方程;

(2)若函數(shù)上為增函數(shù),求實(shí)數(shù)的取值范圍.

【答案】(1);(2).

【解析】

(1)當(dāng)時(shí),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可求曲線處的切線斜率,由點(diǎn)斜式可得結(jié)果;(2)函數(shù)上為增函數(shù),等價(jià)于對(duì)任意x,上恒成立,上恒成立,令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,由單調(diào)性求出的最小值即可求的取值范圍.

(1)當(dāng)a=1時(shí),

f(1)=-e×12+2×1=e,

f ′(x)=-exx+2,

f ′(1)=-e-1+2=1-e,

曲線yf(x)在x=1處的切線方程為y=(1-e)(x-1),

即所求切線方程為:(1-e)xy =0 .

(2)∵函數(shù)R上是增函數(shù),

f ′(x)≥0在R上恒成立,

∴-aexx+2≥0在R上恒成立aR上恒成立,

g(x)=,則g′(x)=,

g′(x)=0,解得x=3,

當(dāng)x變化時(shí),g(x)、g′(x)的變化情況如下表:

x

(-∞,3)

3

(3,+∞)

g′(x)

0

g(x)

函數(shù)g(x)在x=3處取得極小值,即g(x)min

a,

實(shí)數(shù)a的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, AB=1,∠ABC=.

(1 )證明:

2)求二面角A——B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為一種躍進(jìn)商品進(jìn)行合理定價(jià),將該商品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

單位(元)

8

8.2

8.4

8.6

8.8

9

銷量(件)

90

84

83

80

75

68

(1)按照上述數(shù)據(jù),求四歸直線方程,其中,;

(2)預(yù)計(jì)在今后的銷售中,銷量與單位仍然服從(Ⅰ)中的關(guān)系,若該商品的成本是每件7.5元,為使商場獲得最大利潤,該商品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入﹣成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,已知a1=1,a2=a,an+1=k(an+an+2)對(duì)任意n∈N*都成立,數(shù)列{an}的前n項(xiàng)和為Sn
(1)若{an}是等差數(shù)列,求k的值;
(2)若a=1,k=﹣ ,求Sn;
(3)是否存在實(shí)數(shù)k,使數(shù)列{am}是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)am , am+1 , am+2按某順序排列后成等差數(shù)列?若存在,求出所有k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,.

(1)在邊上任取一點(diǎn),求滿足的概率;

(2)的內(nèi)部任作一條射線,與線段交于點(diǎn),求滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓:的離心率為,y軸于橢圓相交于A、B兩點(diǎn),,CD是橢圓上異于A、B的任意兩點(diǎn),且直線ACBD相交于點(diǎn)M,直線ADBC相交于點(diǎn)N

求橢圓的方程;

求直線MN的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,A1B與AB1交于點(diǎn)D,A1C與AC1交于點(diǎn)E.求證:
(1)DE∥平面B1BCC1;
(2)平面A1BC⊥平面A1ACC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F(xiàn)分別是棱AB,BC,B1C1的中點(diǎn),G是棱BB1上的動(dòng)點(diǎn).
(1)當(dāng) 為何值時(shí),平面CDG⊥平面A1DE?
(2)求平面AB1F與平面AD1E所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:y2=8x,圓M:(x﹣2)2+y2=4,點(diǎn)N為拋物線E上的動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),線段ON的中點(diǎn)P的軌跡為曲線C.
(1)求曲線C的方程;
(2)點(diǎn)Q(x0 , y0)(x0≥5)是曲線C上的點(diǎn),過點(diǎn)Q作圓M的兩條切線,分別與x軸交于A,B兩點(diǎn),求△QAB面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案