已知等差數(shù)列{an}的前 n 項(xiàng)和為Sn,令bn=
1
Sn
,且a4b4=
2
5
,S6-S3=15,Tn=b1+b2+…+bn
求:①數(shù)列{bn}的通項(xiàng)公式; ②求Tn
解(1)設(shè){an}的首項(xiàng)為a1,公差為d,
則a4=a1+3d,S3=3a1+3d,S4=4a1+6d,S6=6a1+15d,b4=
1
4a1+6d

a1+3d
4a1+6d
=
2
5
①…(4分)
又(6a1+15d)-(3a1+3d)=15②
由①②得a1=d=1…(6分)
Sn=
n(n+1)
2
bn=
2
n(n+1)
…(8分)

(2)bn=
2
n(n+1)
=2(
1
n
-
1
n+1
)
…(10分)

Tn=2(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
)=2(1-
1
n+1
)=
2n
n+1
…(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案