【題目】已知橢圓和拋物線,在上各取兩個(gè)點(diǎn),這四個(gè)點(diǎn)的坐標(biāo)為.
(Ⅰ)求的方程;
(Ⅱ)設(shè)是在第一象限上的點(diǎn),在點(diǎn)處的切線與交于兩點(diǎn),線段的中點(diǎn)為,過(guò)原點(diǎn)的直線與過(guò)點(diǎn)且垂直于軸的直線交于點(diǎn),證明:點(diǎn)在定直線上.
【答案】(Ⅰ),;(Ⅱ)見(jiàn)解析.
【解析】分析:(Ⅰ)根據(jù)橢圓及拋物線的性質(zhì)可得點(diǎn),在橢圓上,點(diǎn), 在拋物線上,分別代入求值,即可求得的方程;(Ⅱ)設(shè)(),根據(jù)導(dǎo)數(shù)的幾何意義可求出切線的方程,再設(shè),,聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理及線段的中點(diǎn)為,可得點(diǎn)坐標(biāo),即可表示出直線的方程,從而可得點(diǎn)在定直線上
詳解:(Ⅰ)由已知, 點(diǎn),在橢圓上,所以 ,,
解得:,,所以:;
點(diǎn), 在拋物線上,所以,所以:.
(Ⅱ)設(shè)(),由得,所以切線的方程為:.
設(shè),,由得:,
由,得,代入得.
∴
∴:
由得,所以點(diǎn)在定直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)桌面上有一個(gè)由鐵絲圍成的封閉曲線,周長(zhǎng)是.回答下面的問(wèn)題:
(1)當(dāng)封閉曲線為平行四邊形時(shí),用直徑為的圓形紙片是否能完全覆蓋這個(gè)平行四邊形?請(qǐng)說(shuō)明理由.
(2)求證:當(dāng)封閉曲線是四邊形時(shí),正方形的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中國(guó)詩(shī)詞大會(huì)》(第二季)亮點(diǎn)頗多,十場(chǎng)比賽每場(chǎng)都有一首特別設(shè)計(jì)的開(kāi)場(chǎng)詩(shī)詞,在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩(shī)詞排在后六場(chǎng),且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場(chǎng)的排法有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在等腰梯形中,,,,,=60°,沿,折成三棱柱.
(1)若,分別為,的中點(diǎn),求證:∥平面;
(2)若,求二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形為直角梯形,,,且,,點(diǎn),分別在線段和上,使四邊形為正方形,將四邊形沿翻折至使.
(1)若線段中點(diǎn)為,求翻折后形成的多面體的體積;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)和(且為常數(shù)),則下列結(jié)論正確的是( )
A.當(dāng)時(shí),存在實(shí)數(shù),使得關(guān)于的方程有四個(gè)不同的實(shí)數(shù)根
B.存在,使得關(guān)于的方程有三個(gè)不同的實(shí)數(shù)根
C.當(dāng)時(shí),若函數(shù)恰有個(gè)不同的零點(diǎn)、、,則
D.當(dāng)時(shí),且關(guān)于的方程有四個(gè)不同的實(shí)數(shù)根、、、,若在上的最大值為,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)組織部為了了解全區(qū)科級(jí)干部“黨風(fēng)廉政知識(shí)”的學(xué)習(xí)情況,按照分層抽樣的方法,從全區(qū)320名正科級(jí)干部和1280名副科級(jí)干部中抽取40名科級(jí)干部預(yù)測(cè)全區(qū)科級(jí)干部“黨風(fēng)廉政知識(shí)”的學(xué)習(xí)情況.現(xiàn)將這40名科級(jí)干部分為正科級(jí)干部組和副科級(jí)干部組,利用同一份試卷分別進(jìn)行預(yù)測(cè).經(jīng)過(guò)預(yù)測(cè)后,兩組各自將預(yù)測(cè)成績(jī)統(tǒng)計(jì)分析如下表:
分組 | 人數(shù) | 平均成績(jī) | 標(biāo)準(zhǔn)差 |
正科級(jí)干部組 | 80 | 6 | |
副科級(jí)干部組 | 70 | 4 |
(1)求;
(2)求這40名科級(jí)干部預(yù)測(cè)成績(jī)的平均分和標(biāo)準(zhǔn)差;
(3)假設(shè)該區(qū)科級(jí)干部的“黨風(fēng)廉政知識(shí)”預(yù)測(cè)成績(jī)服從正態(tài)分布,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值.利用估計(jì)值估計(jì):該區(qū)科級(jí)干部“黨風(fēng)廉政知識(shí)”預(yù)測(cè)成績(jī)小于60分的約為多少人?
附:若隨機(jī)變量服從正態(tài)分布,則;;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為實(shí)常數(shù).
(Ⅰ)判斷的奇偶性;
(Ⅱ)若對(duì)任意,使不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com