已知數(shù)列{an}是等差數(shù)列,a3=5,a10=-9
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求sn的最大值以及取得最大值時(shí)n的值.
分析:(1)由已知可得公差d的值,進(jìn)而可得其首項(xiàng),代入通項(xiàng)公式可得;
(2)令an=11-2n≤0,解不等式可得數(shù)列{an}的前5項(xiàng)為正數(shù),從第6項(xiàng)開始為負(fù)值,可得前5項(xiàng)和最大.
解答:解:(1)由題意可得數(shù)列{an}的公差d=
a10-a3
10-3
=-2,
故可得a1=a3-2d=5-2(-2)=9,
故an=9-2(n-1)=11-2n
(2)令an=11-2n≤0可得n≥
11
2
,
故數(shù)列{an}的前5項(xiàng)為正數(shù),從第6項(xiàng)開始為負(fù)值,
故數(shù)列的前5項(xiàng)和最大,且S5=5×9+
5×4
2
×(-2)
=25
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式,以及前n項(xiàng)和公式及最值,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義一個(gè)“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它后一項(xiàng)的積都是同一常數(shù),那么這個(gè)數(shù)列叫“等積數(shù)列”,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,則這個(gè)數(shù)列的前n項(xiàng)和Sn的計(jì)算公式為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)數(shù)列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,k叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一個(gè)項(xiàng)與它的后一項(xiàng)的積都為同一個(gè)常數(shù),那末這個(gè)數(shù)列叫做等積數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,Tn為數(shù)列{an}前n項(xiàng)的積,則T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們對(duì)數(shù)列作如下定義,如果?n∈N*,都有anan+1an+2=k(k為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,k叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=2,公積為6,則a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列的定義為:在一個(gè)數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個(gè)數(shù)列的通項(xiàng)公式(不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案