分析 (1)由已知中f:A→是從A到B的一個映射,f:(x,y)→(2x-y,2y-x),將x=-1,y=2代入可得答案.
(2)根據(jù)對應(yīng)法則和象、原象的坐標,即可得出結(jié)論.
解答 解:(1)∵f:(x,y)→(2x-y,2y-x),
當x=-1,y=2時,
2x-y=-4,2y-x=5.
故A中的元素(-1,2)在B中的像是(-4,5);
(2)設(shè)(3,-3)的原像是(x,y),
則由A=B={(x,y)|x,y∈R},f:(x,y)→(2x-y,2y-x),
可得2x-y=3,2y-x=-3,
∴x=1,y=-1,
∴B中元素(3,-3)的原像是(1,-1).
點評 本題考查的知識點是映射的定義,其中根據(jù)已知中映射的對應(yīng)法則直接代入可得答案.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)的最小正周期為$\frac{π}{2}$ | B. | f(x-$\frac{π}{6}$)是奇函數(shù) | ||
C. | f(x)的一個對稱中心為($\frac{π}{6}$,0) | D. | f(x)的一條對稱軸為x=$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a5>0,則a2017<0 | B. | 若a6>0,則a2018<0 | ||
C. | 若a5>0,則S2017>0 | D. | 若a6>0,則S2018>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{4}{5}$ | B. | $-\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,4) | B. | (0,2) | C. | (-∞,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com