能夠使得圓x2+y2-2x+4y+1=0上恰有兩個(gè)點(diǎn)到直線2x+y+c=0距離等于1的c的取值范圍為________.

(-3,-)∪(,3
分析:把圓的方程化為標(biāo)準(zhǔn)方程后,找出圓心坐標(biāo)和圓的半徑,根據(jù)題意畫出圖象,如圖所示,根據(jù)圖象得到圓心到已知直線的距離d大于1小于3,利用點(diǎn)到直線的距離公式表示出圓心到已知直線的距離,進(jìn)而列出關(guān)于c的不等式,求出不等式的解集即可得到c的取值范圍.
解答:解:把圓的方程化為標(biāo)準(zhǔn)方程得:(x-1)2+(y+2)2=4,
得到圓心坐標(biāo)為(1,-2),半徑r=2,
根據(jù)題意畫出圖象,如圖所示:
因?yàn)閳A心到直線2x+y+c=0的距離d=,根據(jù)圖象可知:
當(dāng)d∈(1,3)時(shí),圓上恰有兩個(gè)點(diǎn)到直線2x+y+c=0距離等于1,
即1<<3,當(dāng)c>0時(shí),解得:<c<3;當(dāng)c<0時(shí),解得-3<c<-
則滿足題意的c的取值范圍是:(-3,-)∪(,3).
故答案為:(-3,-)∪(,3).
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用點(diǎn)到直線的距離公式化簡(jiǎn)求值,考查了數(shù)形結(jié)合的數(shù)學(xué)思想,是一道中檔題.本題的關(guān)鍵是通過(guò)圖象找出圓心到已知直線的距離的取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

能夠使得圓x2+y2-2x+4y+1=0上恰有兩個(gè)點(diǎn)到直線2x+y+c=0距離等于1的c的一個(gè)值為( 。
A、2
B、
5
C、3
D、3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

能夠使得圓x2+y2-2x+4y+1=0上恰有兩個(gè)點(diǎn)到直線2x+y+c=0距離等于1的c的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省廣州市越秀區(qū)高一(上)學(xué)業(yè)水平調(diào)研數(shù)學(xué)試卷(解析版) 題型:選擇題

能夠使得圓x2+y2-2x+4y+1=0上恰有兩個(gè)點(diǎn)到直線2x+y+c=0距離等于1的c的一個(gè)值為( )
A.2
B.
C.3
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年湖北省武漢市華中師大一附中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

能夠使得圓x2+y2-2x+4y+1=0上恰有兩個(gè)點(diǎn)到直線2x+y+c=0距離等于1的c的一個(gè)值為( )
A.2
B.
C.3
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)精品復(fù)習(xí)14:曲線與方程,圓的方程(解析版) 題型:選擇題

能夠使得圓x2+y2-2x+4y+1=0上恰有兩個(gè)點(diǎn)到直線2x+y+c=0距離等于1的c的一個(gè)值為( )
A.2
B.
C.3
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案