關于雙曲線
x2
9
-
y2
16
=-1,有以下說法:
①實軸長為6;
②雙曲線的離心率是
5
4
;
③焦點坐標為(±5,0);
④漸近線方程是y=±
4
3
x,
⑤焦點到漸近線的距離等于3.
正確的說法是______.(把所有正確的說法序號都填上)
∵雙曲線
x2
9
-
y2
16
=-1,∴a=3,b=4,c=
9+16
=5,
∴①實軸長為2a=6,故①正確;
②雙曲線的離心率是e=
c
a
=
5
3
5
4
,故②錯誤;
③焦點坐標為F(±5,0),故③正確;
④漸近線方程是y=±
4
3
x,故④正確;
⑤焦點到漸近線的距離為d=
|4×5+0|
9+16
=4≠3,故⑤不正確.
故答案為:①③④.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1,F(xiàn)2分別是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,若雙曲線右支上存在一點P,使|OP|=|OF1|(O為原點),且|PF1|=
3
|PF2|,則雙曲線的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點,若過點F且傾斜角為60°的直線與雙曲線的右支有兩個交點,則該雙曲線的離心率e的取值范圍是( 。
A.(1,2)B.(1,3)C.(1,1+
2
D.(2,1+
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知A(4,3),且P是雙曲線x2-y2=2上一點,F(xiàn)2為雙曲線的右焦點,則|PA|+|PF2|的最小值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,橢圓C1、C2與雙曲線C3、C4的離心率分別是e1、e2與e3、e4,e1、e2、e3、e4的大小關系是( 。
A.e2<e1<e3<e4B.e2<e1<e4<e3
C.e1<e2<e3<e4D.e1<e2<e4<e3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若方程C:x2+
y2
a
=1(a是常數(shù))則下列結論正確的是( 。
A.?a∈R+,方程C表示橢圓
B.?a∈R-,方程C表示雙曲線
C.?a∈R-,方程C表示橢圓
D.?a∈R,方程C表示拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線
x2
3
-
y2
b2
=1(b>0)的左頂點為A1,右頂點A2,右焦點為F,點P為雙曲線上一點,
PF
A1A2
=0,
PA1
PA2
=
10
3
,則雙曲線的離心率為(  )
A.
15
3
B.
5
3
3
C.
5
3
D.
5
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

點P為直線x+2y-1=0上的一個動點,F(xiàn)1、F2為雙曲線
x2
4
-
y2
5
=1
的左、右焦點,則
PF1
PF2
的最小值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線關于軸對稱,它的頂點在坐標原點,并且經(jīng)過點,若點到該拋物線焦點的距離為3,則=(   )
A.B.C.4D.

查看答案和解析>>

同步練習冊答案