已知橢圓的離心率為,直線(xiàn)與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線(xiàn)過(guò)點(diǎn),且垂直于橢圓的長(zhǎng)軸,動(dòng)直線(xiàn)垂直于,垂足為點(diǎn),線(xiàn)段的垂直平分線(xiàn)交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)設(shè)與軸交于點(diǎn),不同的兩點(diǎn)在上(與也不重合),且滿(mǎn)足,求的取值范圍.
(1);(2);(3).
【解析】
試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線(xiàn)的方程、平面內(nèi)兩點(diǎn)間的距離公式等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線(xiàn)的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.第一問(wèn),利用直線(xiàn)與圓相切列出距離公式,求出橢圓中的基本量,比較簡(jiǎn)單;第二問(wèn),考查拋物線(xiàn)的定義,本問(wèn)主要考查理解題意的能力;第三問(wèn),與向量相結(jié)合,再加上基本不等式求最值.
試題解析:(1)由直線(xiàn)與圓相切,得,即.
由,得,所以,所以橢圓的方程是. (4分)
(2)由條件,知,即動(dòng)點(diǎn)到定點(diǎn)的距離等于它到直線(xiàn)的距離,由拋物線(xiàn)的定義得點(diǎn)的軌跡的方程是.(6分)
(3)由(2)知,設(shè),
∴
由,得,
∵,∴,
∴,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.
又,
∵,∴當(dāng),即時(shí),.
故的取值范圍是.(12分)
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程;2.點(diǎn)到直線(xiàn)的距離公式;3.拋物線(xiàn)的定義;4.基本不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
| ||
3 |
OA |
OB |
1 |
2 |
OM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com