分析 根據(jù)題意可知f(-4)+f(0)=0,由此可知求出a,f(x+m)-f(x)<0等價于3x2+3(m+4)x+m2+6m+3<0,利用(-5,-2)⊆A,即可求出實數(shù)m的取值范圍.
解答 解:∵函數(shù)f(x)=(x+2)(x2+ax-5)的圖象關于點(-2,0)中心對稱,
∴f(-4)+f(0)=0,
∴a=4,
∴f(x)=(x+2)(x2+4x-5)=x3+6x2+3x-10,
f(x+m)<f(x)等價于f(x+m)-f(x)<0,
f(x+m)-f(x)=m[3x2+3(m+4)x+m2+6m+3]
若m>0,f(x+m)-f(x)<0等價于3x2+3(m+4)x+m2+6m+3<0,
由題意3×(-5)2-15(m+4)+m2+6m+3≤0且3×(-2)2-6(m+4)+m2+6m+3≤0,
∴3≤m≤6且-3≤m≤3,
∴m=3,
同理,m<0時,m=-3,
故答案為:{3,-3}.
點評 本題考查集合的包含關系,考查函數(shù)圖象的對稱性,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 5 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {y|y∈R,且y≠-3} | B. | {y|y∈R,且y≠0} | C. | (-∞,3)∪(3,+∞) | D. | [-3,3] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com