【題目】已知函數(shù)f(x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x3﹣1;當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x);當(dāng)x> 時(shí),f(x+ )=f(x﹣ ).則f(6)=( 。
A.﹣2
B.﹣1
C.0
D.2
【答案】D
【解析】解:∵當(dāng)x> 時(shí),f(x+ )=f(x﹣ ), ∴當(dāng)x> 時(shí),f(x+1)=f(x),即周期為1.
∴f(6)=f(1),
∵當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x),
∴f(1)=﹣f(﹣1),
∵當(dāng)x<0時(shí),f(x)=x3﹣1,
∴f(﹣1)=﹣2,
∴f(1)=﹣f(﹣1)=2,
∴f(6)=2.
故選:D.
求得函數(shù)的周期為1,再利用當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),當(dāng)x<0時(shí),f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出結(jié)論.;本題考查函數(shù)值的計(jì)算,考查函數(shù)的周期性,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在長方形中,為的中點(diǎn),為線段上一動(dòng)點(diǎn).現(xiàn)將沿折起,形成四棱錐.
圖1 圖2 圖3
(Ⅰ)若與重合,且(如圖2).
(ⅰ)證明:平面;
(ⅱ)求二面角的余弦值.
(Ⅱ)若不與重合,且平面平面 (如圖3),設(shè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(1)設(shè)a=2,b= .
①求方程f(x)=2的根;
②若對(duì)于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求實(shí)數(shù)m的最大值;
(2)若0<a<1,b>1,函數(shù)g(x)=f(x)﹣2有且只有1個(gè)零點(diǎn),求ab的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖所示,在多面體 中,四邊形 均為正方形,點(diǎn) 為 的中點(diǎn),過的平面交 于 點(diǎn).
(1) 證明: ∥;
(2) 求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在極值點(diǎn)x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=0;
(3)設(shè)a>0,函數(shù)g(x)=|f(x)|,求證:g(x)在區(qū)間[﹣1,1]上的最大值不小于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
(sin )﹣2+(sin )﹣2= ×1×2;
(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此規(guī)律,
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABC中,底面ABCD為平行四邊形,,O為AC的中點(diǎn),平面M為PD的中點(diǎn)。
(1)證明平面.
(2)證明平面 .
(3)求三棱錐P-MAC體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)列{An}、{Bn}分別在某銳角的兩邊上且|AnAn+1|=|An+1An+2|,An≠An+1 , n∈N* , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N* , (P≠Q(mào)表示點(diǎn)P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。
A.{Sn}是等差數(shù)列
B.{Sn2}是等差數(shù)列
C.{dn}是等差數(shù)列
D.{dn2}是等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x﹣1)+ (a∈R).
(1)若函數(shù)f(x)在區(qū)間(1,4)上單調(diào)遞增,求a的取值范圍;
(2)若函數(shù)y=f(x)的圖象與直線4x﹣3y﹣2=0相切,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com