試題分析:因為橢圓
的焦點在
軸上,離心率為
,所以
,所以
的值為
。
點評:熟練判斷橢圓方程中的
,誰大誰就是
。屬于基礎題型。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)已知橢圓C
1:
的離心率為
,直線
l: y-=x+2與.以原點為圓心、橢圓C
1的短半軸長為半徑的圓O相切.
(1)求橢圓C
1的方程;
(ll)設橢圓C
1的左焦點為F
1,右焦點為F
2,直線
l2過點F價且垂直于橢圓的長軸,動直線
l2垂直于
l1,垂足為點P,線段PF
2的垂直平分線交
l2于點M,求點M的軌跡C
2的方程;
(III)過橢圓C
1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形, 求直線m的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是橢圓
的兩個焦點,
為橢圓上的一點,且
,則
的面積是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
中心在坐標原點的橢圓,焦點在x軸上,焦距為4,離心率為
,則該橢圓的方程為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知P為拋物線
上的動點,點P在x軸上的射影為M,點A的坐標是
,則
的最小值是( )
A.8 | B. | C.10 | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設A、B為在雙曲線
上兩點,O為坐標原點.若
=0,則ΔAOB面積的最小值為______
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在平面直角坐標系
中,
是半圓
的直徑,
是半圓
(除端點
)上的任意一點.在線段
的延長線上取點
,使
,試求動點
的軌跡方程
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
有一拋物線型拱橋,當水面離拱頂
米時,水面寬
米,則當水面下降
米后,水面寬度為
A.9 | B.4.5 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知拋物線、橢圓和雙曲線都經(jīng)過點
,它們在
軸上有共同焦點,橢圓和雙曲線的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這三條曲線的方程;
(2)對于拋物線上任意一點
,點
都滿足
,求
的取值范圍.
查看答案和解析>>