(本題滿(mǎn)分12分)若實(shí)數(shù)、、滿(mǎn)足,則稱(chēng)接近.
(1)若比3接近0,求的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)、,證明:接近;
(3)已知函數(shù)的定義域.任取,等于中接近0的那個(gè)值.寫(xiě)出函數(shù)的解析式,并指出它的奇偶性、最值和單調(diào)性(結(jié)論不要求證明).

(1)xÎ(-2,2);
(2)略
(3)f(x)是偶函數(shù);函數(shù)f(x)的最小值為,最大值為;
函數(shù)f(x)在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題13分)已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間是增函數(shù),求實(shí)數(shù)的       取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)已知函數(shù)
(1)判斷的奇偶性并證明;
(2)若的定義域?yàn)閇](),判斷在定義域上的增減性,并加以證明;
(3)若,使的值域?yàn)閇]的定義域區(qū)間[]()是否存在?若存在,求出[],若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)已知定義域?yàn)?i>R的函數(shù)是奇函數(shù).
(I)求a的值,并指出函數(shù)的單調(diào)性(不必說(shuō)明單調(diào)性理由);
(II)若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)已知函數(shù)
(Ⅰ)若的解集是,求實(shí)數(shù)的值;
(Ⅱ)若為整數(shù),,且函數(shù)上恰有一個(gè)零點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本大題滿(mǎn)分12分)
某公司預(yù)計(jì)全年分批購(gòu)入每臺(tái)價(jià)值為2000元的電視機(jī)共3600臺(tái),每批都購(gòu)入x臺(tái),且每批均需付運(yùn)費(fèi)400元,儲(chǔ)存購(gòu)入的電視機(jī)全年所付保管費(fèi)與每批購(gòu)入電視機(jī)的總價(jià)值(不含運(yùn)費(fèi))成正比。若每批購(gòu)入400臺(tái),則全年需用去運(yùn)費(fèi)和保管費(fèi)43600元,F(xiàn)在全年只有24000元資金用于支付運(yùn)費(fèi)和保管費(fèi),請(qǐng)問(wèn)能否恰當(dāng)安排每批進(jìn)貨的數(shù)量,使資金夠用?寫(xiě)出你的結(jié)論并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分) 已知函數(shù)   ,x ∈[ 3 , 5 ] ,
(1)用定義證明函數(shù)的單調(diào)性;
(2)求函數(shù)的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)已知函數(shù) 
(1)畫(huà)出函數(shù)的圖象;
(2)利用圖象回答:當(dāng)為何值時(shí),方程有一個(gè)解?有兩個(gè)解?有三個(gè)解?

查看答案和解析>>

同步練習(xí)冊(cè)答案