【題目】已知函數(shù)f(x)=2sin2( +x)﹣ cos2x﹣1,x∈R,若函數(shù)k(x)=f(x+a)的圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱,且α∈(0,π),則α=( )
A.
B.
C.
D.
【答案】B
【解析】解:∵f(x)=1﹣cos( +2x)﹣ cos2x﹣1
=sin2x﹣ cos2x
=2sin(2x﹣ ),
∴h(x)=f(x+α)=2sin(2x+2α﹣ ),
∵其圖象關(guān)于(﹣ ,0)對(duì)稱,
∴2×(﹣ )+2α﹣ =kπ,k∈Z,
∴2α=(k+1)π,k∈Z.
∴α= π,又α∈(0,π),
∴α= .
故選B.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位員工人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(1)下表是年齡的頻率分布表,求正整數(shù)的值;
區(qū)間 | |||||
人數(shù) |
(2)現(xiàn)在要從年齡較小的第組中用分層抽樣的方法抽取人,年齡在第組抽取的員工的人數(shù)分別是多少?
(3)在(2)的前提下,從這人中隨機(jī)抽取人參加社區(qū)宣傳交流活動(dòng),求至少有人年齡在第組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠第一季度某產(chǎn)品月生產(chǎn)量分別為10萬件,12萬件,13萬件,為了預(yù)測(cè)以后每個(gè)月的產(chǎn)量,以這3個(gè)月的產(chǎn)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量y (單位:萬件)與月份x 的關(guān)系.模擬函數(shù)1:y=ax+ +c
;模擬函數(shù)2:y=mnx+s.
(1)已知4月份的產(chǎn)量為13.7 萬件,問選用哪個(gè)函數(shù)作為模擬函數(shù)好?
(2)受工廠設(shè)備的影響,全年的每月產(chǎn)量都不超過15萬件,請(qǐng)選用合適的模擬函數(shù)預(yù)測(cè)6月份的產(chǎn)量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校對(duì)高三年級(jí)的學(xué)生進(jìn)行體檢,現(xiàn)將高三男生體重(單位:kg)的數(shù)據(jù)進(jìn)行整理后分為五組,并繪制出頻率分布直方圖(如圖所示).根據(jù)一般標(biāo)準(zhǔn),高三男生的體重超過65 kg屬于偏胖,低于55 kg屬于偏瘦.已知圖中從左到右第一、第三、第四、第五小組的頻率分別為0.25,0.20,0.10,0.05,第二小組的頻數(shù)為400,則該校高三年級(jí)男生的總數(shù)和體重正常的頻率分別為( )
A. 1000,0.50 B. 800,0.50
C. 800,0.60 D. 1000,0.60
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司經(jīng)營(yíng)一批進(jìn)價(jià)為每件400元的商品,在市場(chǎng)調(diào)查時(shí)發(fā)現(xiàn),此商品的銷售單價(jià)x(元)與日銷售量y(件)之間的關(guān)系如下表所示:
x/元 | 500 | 600 | 700 | 800 | 900 |
y/件 | 10 | 8 | 9 | 6 | 1 |
(1)求y關(guān)于x的回歸直線方程.
(2)借助回歸直線方程,預(yù)測(cè)銷售單價(jià)為多少元時(shí),日利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)某企業(yè)擬建造如圖所示的容器(不計(jì)厚度,長(zhǎng)度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計(jì)要求容器的容積為立方米,且.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為()千元.設(shè)該容器的建造費(fèi)用為千元.
(1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該容器的建造費(fèi)用最小時(shí)的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2﹣x+ )的值域?yàn)镽;命題q:3x﹣9x<a對(duì)一切實(shí)數(shù)x恒成立,如果命題“p且q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出兩個(gè)命題:
命題甲:關(guān)于x的不等式x2+(a﹣1)x+a2≤0的解集為;
命題乙:函數(shù)y=(2a2﹣a)x為增函數(shù).
(1)甲、乙至少有一個(gè)是真命題;
(2)甲、乙有且只有一個(gè)是真命題;
分別求出符合(1)(2)的實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C: =1(a>1)的左、右頂點(diǎn)分別為A、B,P是橢圓C上任一點(diǎn),且點(diǎn)P位于第一象限.直線PA交y軸于點(diǎn)Q,直線PB交y軸于點(diǎn)R.當(dāng)點(diǎn)Q坐標(biāo)為(0,1)時(shí),點(diǎn)R坐標(biāo)為(0,2)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證: 為定值;
(3)求證:過點(diǎn)R且與直線QB垂直的直線經(jīng)過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com