分析:(1)利用已知條件中數(shù)列的前n項和與項的遞推關系,通過仿寫得到另一個等式,兩個式子相減得到數(shù)列的項間的遞推關系,利用等差數(shù)列的通項公式求出數(shù)列{an}的通項公式.
(2)將(1)中求出的項代入已知等式得到bn,求出數(shù)列{bn}的前三項,利用等比數(shù)列前三項成等比數(shù)列,列出方程求出a的值,將a的值代入通項檢驗.
(3)求出通項Cn,利用放縮法將通項放縮得到一個等比數(shù)列,利用等比數(shù)列的前n項和公式求出前n項和,不等式得證.
解答:解:(1)由(a-1)S
n=aa
n-a ①
當n≥2時,(a-1)S
n-1=aa
n-1-a ②
由①-②得n≥2時,(a-1)a
n=aa
n-aa
n-1即a
n=aa
n-1又a
1=a≠0
∴數(shù)列{a
n}是以a為首項,a為公比的等比數(shù)列
∴a
n=a
n(2)
bn=+1=()n+b1=3,b2=,b3=又b
22=b
1•b
3得(3a+2)
2=3(3a
2+2a+2)解得
a=又
a=時,
bn=3n顯然為等比數(shù)列
故
a=(3)由(2)得
Cn=+=
2-又
<=
<∴
n |
|
i=1 |
< n |
|
i=1 |
=
<∴
Tn>2n- 點評:已知數(shù)列的和與項的遞推關系求通項時,一般利用仿寫作差的方法將遞推關系轉化為項間的遞推關系求出通項;解決一個數(shù)列是等差數(shù)列、等比數(shù)列求參數(shù)的范圍,一般利用前三項列出等式求出參數(shù),再代入通項檢驗.