A. | y=$\sqrt{{x}^{4}}$與y=($\sqrt{x}$)4 | B. | y=$\root{3}{{x}^{3}}$與y=$\frac{{x}^{2}}{x}$ | ||
C. | y=$\sqrt{{x}^{2}+x}$ 與y=$\sqrt{x}$•$\sqrt{x+1}$ | D. | y=$\frac{1}{|x|}$與y=$\frac{1}{\sqrt{{x}^{2}}}$ |
分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,即可判斷它們是同一函數(shù).
解答 解:對于A,函數(shù)y=$\sqrt{{x}^{4}}$=x2(x∈R),與函數(shù)y=${(\sqrt{{x}^{2}})}^{4}$=x2(x≥0)的定義域不同,所以不是同一函數(shù);
對于B,函數(shù)y=$\root{3}{{x}^{3}}$=x(x∈R),與函數(shù)y=$\frac{{x}^{2}}{x}$=x(x≠0)的定義域不同,所以不是同一函數(shù);
對于C,函數(shù)y=$\sqrt{{x}^{2}+x}$=(x≤-1或x≥0),與函數(shù)y=$\sqrt{x}$•$\sqrt{x+1}$=$\sqrt{{x}^{2}+x}$(x≥0)的定義域不同,
所以不是同一函數(shù);
對于D,函數(shù)y=$\frac{1}{|x|}$(x≠0),與函數(shù)y=$\frac{1}{\sqrt{{x}^{2}}}$=$\frac{1}{|x|}$(x≠0)的定義域相同,對應(yīng)關(guān)系也相同,
所以是同一函數(shù).
故選:D.
點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{i}$+$\overrightarrow{j}$+$\overrightarrow{k}$ | B. | $\frac{1}{3}$$\overrightarrow{i}$+$\frac{1}{2}$$\overrightarrow{j}$+$\frac{1}{5}$$\overrightarrow{k}$ | C. | 3$\overrightarrow{i}$+2$\overrightarrow{j}$+5$\overrightarrow{k}$ | D. | 3$\overrightarrow{i}$+2$\overrightarrow{j}$-5$\overrightarrow{k}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{{\sqrt{6}}}{3},1]$ | B. | $[\frac{{\sqrt{2}}}{3},1]$ | C. | $[\frac{{\sqrt{2}}}{3},\frac{{2\sqrt{2}}}{3}]$ | D. | $[\frac{{\sqrt{6}}}{3},\frac{{2\sqrt{2}}}{3}]$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com