函數(shù)y=
2x-1
3x+2
的值域是
 
考點(diǎn):函數(shù)的值域
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:先將原式轉(zhuǎn)化成部分分式的形式,再利用反比例函數(shù)的值域,得到本題結(jié)論.
解答: 解:∵
2x-1
3x+2
=
2
3
+
-
7
3
3x+2

-
7
3
3x-2
≠0
,
2x-1
3x+2
2
3

∴函數(shù)y=
2x-1
3x+2
的值域是(-∞,
2
3
)∪(
2
3
,+∞)

故答案為:(-∞,
2
3
)∪(
2
3
,+∞)
點(diǎn)評(píng):本題考查的是一次分式函數(shù)的值域,本題難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(2,3)作直線l分別與x軸的正半軸和y軸的正半軸交于A(a,0),B(0,b)兩點(diǎn)
(1)求|PA|+|PB|的最小值.
(2)當(dāng)△AOB(O為原點(diǎn))的面積S最小時(shí),求直線l的方程,并求出S的最小值.
(3)當(dāng)|PA|•|PB|取得最小值時(shí),求直線?的方程.(提示:設(shè)∠OAB=θ,以θ為參變量求解,x+y-5=0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式2x2+mx+n>0的解集是{x|x>3或x<-2},則m+n的值是( 。
A、-14B、12
C、-12D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=2,an=-
1
an-1
(n≥2),則a2013
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是公比為q的等比數(shù)列,|q|>1,令bn=an+1(n=1,2,…),若數(shù)列{bn}有連續(xù)四項(xiàng)在集合{-53,-23,19,37,82}中,則2q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在常數(shù)a≠0,使得x取定義域內(nèi)的每一個(gè)值,都有f(x)=-f(2a-x),則稱(chēng)f(x)為準(zhǔn)奇函數(shù),下列函數(shù)中是準(zhǔn)奇函數(shù)的是
 
(把所有滿足條件的序號(hào)都填上)
①f(x)=
x

②f(x)=x2
③f(x)=tanx
④f(x)=cos(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P,Q分別為直線3x+4y-12=0與6x+8y+5=0上任意一點(diǎn),則|PQ|的最小值為( 。
A、
9
5
B、
18
5
C、
29
10
D、
29
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a=5,b=3,若△ABC有兩解,則角B的大小可以是( 。
A、30°B、45°
C、60°D、75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:函數(shù)y=loga(x+1)(a>0,a≠1)在x∈(0,+∞)上單調(diào)遞減;命題q:3x-9x<a對(duì)一切的x∈R恒成立,如果命題“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案