已知雙曲線C的中心在原點,焦點在坐標(biāo)軸上,P(1,-2)是C上的點,且y=
2
x
是C的一條漸近線,則C的方程為( 。
A.
y2
2
-x2=1
B.2x2-
y2
2
=1
C.
y2
2
-x2=1或2x2-
y2
2
=1
D.
y2
2
-x2=1或x2-
y2
2
=1
由題意可知:求的雙曲線的方程是標(biāo)準(zhǔn)方程.
y=
2
x
是C的一條漸近線,
∴可設(shè)雙曲線的方程為(y+
2
x)(y-
2
x)=λ

把點P(1,-2)代入得(-2)2-2×12=λ,解得λ=2.
∴雙曲線的方程為y2-2x2=2.化為
y2
2
-x2=1

故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點為F,過F且斜率為
3
的直線交C于A、B兩點,若
AF
=4
FB
,則C的離心率為( 。
A.
6
5
B.
7
5
C.
5
8
D.
9
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知以原點O為中心的雙曲線的一條準(zhǔn)線方程為x=
5
5
,離心率e=
5

(Ⅰ)求該雙曲線的方程;
(Ⅱ)如圖,點A的坐標(biāo)為(-
5
,0)
,B是圓x2+(y-
5
)2=1
上的點,點M在雙曲線右支上,|MA|+|MB|的最小值,并求此時M點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點M(-3,0)、N(3,0)、B(1,0),動圓C與直線MN切于點B,過M、N與圓C相切的兩直線相交于點P,則P點的軌跡方程為( 。
A.x2-
y2
8
=1(x<-1)
B.x2-
y2
8
=1(x>1)
C.x2+
y2
8
=1(x>0)
D.x2-
y2
10
=1(x>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程
(Ⅰ)求以橢圓
x2
13
+
y2
3
=1
的焦點為焦點,以直線y=±
1
2
x
為漸近線
(Ⅱ)雙曲線的兩條對稱軸是坐標(biāo)軸,實軸長是虛軸長的一半,且過點(3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線的離心率等于3,且與橢圓
x2
16
+
y2
7
=1
有相同的焦點,求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與雙曲線
x2
16
-
y2
9
=1
有共同的漸近線,且經(jīng)過點A(2
3
,-3)
的雙曲線標(biāo)準(zhǔn)方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
2
-
y2
4
=1的漸近線方程為(  )
A.y=±2xB.y=±
2
x
C.y=±
1
2
x
D.y=±
2
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點A(0,2)可以作___條直線與雙曲線x2=1有且只有一個公共點

查看答案和解析>>

同步練習(xí)冊答案