若函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=-x,則f(32.5)等于(  )
分析:由f(x+2)=-f(x)可得f(x+4)=-f(x+2)=f(x),結(jié)合已知區(qū)間上的函數(shù)解析式即可求解
解答:解:∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x)
∵當(dāng)0≤x≤1時(shí),f(x)=-x,
則f(32.5)=f(0.5)=-0.5
故選B
點(diǎn)評(píng):本題主要考查了函數(shù)值的求解,解題的關(guān)鍵是把所求的函數(shù)知轉(zhuǎn)化到已知區(qū)間上
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三(上)第一次質(zhì)量檢測(cè)數(shù)學(xué)試卷 (理科)(解析版) 題型:選擇題

已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時(shí),f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省洛陽一中高三(上)期中數(shù)學(xué)考前選擇題強(qiáng)化訓(xùn)練(解析版) 題型:選擇題

已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時(shí),f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三(上)第一次質(zhì)量檢測(cè)數(shù)學(xué)試卷 (文科)(解析版) 題型:選擇題

已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時(shí),f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省湘西州邊城高級(jí)中學(xué)高三(上)月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時(shí),f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省湘西州古丈縣補(bǔ)習(xí)學(xué)校高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時(shí),f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

同步練習(xí)冊(cè)答案