用數(shù)學歸納法證明2n≥n2(n∈N,n≥1),則第一步應驗證 .
科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-6 2.4一次同余方程練習卷(解析版) 題型:選擇題
(2012•藍山縣模擬)已知m是一個給定的正整數(shù),如果兩個整數(shù)a,b被m除得的余數(shù)相同,則稱a與b對模m同余,記作a≡b(modm),例如:5≡13(mod4).若22010≡r(mod7),則r可以為( )
A.2008 B.2009 C.2010 D.2011
查看答案和解析>>
科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-6 1.1整除練習卷(解析版) 題型:選擇題
存在整數(shù)n,使+是整數(shù)的質(zhì)數(shù)p( )
A.不存在
B.只有一個
C.多于一個,但為有限個
D.有無窮多個
查看答案和解析>>
科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-5 4.2數(shù)學歸納法證明不等式舉例(解析版) 題型:解答題
(2008•武漢模擬)在數(shù)列|an|中,a1=t﹣1,其中t>0且t≠1,且滿足關(guān)系式:an+1(an+tn﹣1)=an(tn+1﹣1),(n∈N+)
(1)猜想出數(shù)列|an|的通項公式并用數(shù)學歸納法證明之;
(2)求證:an+1>an,(n∈N+).
查看答案和解析>>
科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-5 4.1數(shù)學歸納法練習卷(解析版) 題型:選擇題
一個關(guān)于自然數(shù)n的命題,如果驗證當n=1時命題成立,并在假設(shè)當n=k(k≥1且k∈N*)時命題成立的基礎(chǔ)上,證明了當n=k+2時命題成立,那么綜合上述,對于( )
A.一切正整數(shù)命題成立 B.一切正奇數(shù)命題成立
C.一切正偶數(shù)命題成立 D.以上都不對
查看答案和解析>>
科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-5 4.1數(shù)學歸納法練習卷(解析版) 題型:選擇題
在用數(shù)學歸納法證明時,在驗證當n=1時,等式左邊為( )
A.1 B.1+a C.1+a+a2 D.1+a+a2+a3
查看答案和解析>>
科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-5 3.3排序不等式練習卷(解析版) 題型:解答題
已知a,b,c為正數(shù),用排序不等式證明:2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b).
查看答案和解析>>
科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-5 2.3反證法與放縮法練習卷(解析版) 題型:選擇題
用反證法證明:將9個球分別染成紅色或白色,那么無論怎么染,至少有5個球是同色的.其假設(shè)應是( )
A.至少有5個球是同色的 B.至少有5個球不是同色的
C.至多有4個球是同色的 D.至少有4個球不是同色的
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com