在解決問題:“證明數(shù)集A={x|2<x≤3}沒有最小數(shù)”時,可用反證法證明.假設a(2<a≤3)是A中的最小數(shù),則取,可得:,與假設中“a是A中的最小數(shù)”矛盾!那么對于問題:“證明數(shù)集沒有最大數(shù)”,也可以用反證法證明.我們可以假設是B中的最大數(shù),則可以找到x'=    (用m,n表示),由此可知x'∈B,x'>x,這與假設矛盾!所以數(shù)集B沒有最大數(shù).
【答案】分析:利用不等式的性質可得,且n+1<m+1,n+1∈N*,m+1∈N*,故 x'=,
從而得到答案.
解答:解:證明數(shù)集沒有最大數(shù)”,可以用反證法證明.
假設是B中的最大數(shù),則可以找到x'=,
,n+1<m+1,n+1∈N*,m+1∈N*,且x'>x,
這與假設矛盾!所以數(shù)集B沒有最大數(shù).
故答案為:
點評:本題主要考查用反證法證明數(shù)學命題,不等式的性質的應用.本題的答案不唯一,如 …都可以.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•上海模擬)在解決問題:“證明數(shù)集A={x|2<x≤3}沒有最小數(shù)”時,可用反證法證明.假設a(2<a≤3)是A中的最小數(shù),則取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,與假設中“a是A中的最小數(shù)”矛盾!那么對于問題:“證明數(shù)集B={x|x=
n
m
,m,n∈N*,并且n<m}
沒有最大數(shù)”,也可以用反證法證明.我們可以假設x=
n0
m0
是B中的最大數(shù),則可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,這與假設矛盾!所以數(shù)集B沒有最大數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省寧波市八校聯(lián)考高二第二學期期末數(shù)學(理)試題 題型:填空題

在解決問題:“證明數(shù)集沒有最小數(shù)”時,可用反證法證明.

假設中的最小數(shù),則取,可得:,與假設中“中的最小數(shù)”矛盾! 那么對于問題:“證明數(shù)集沒有最大數(shù)”,也可以用反證法證明.我們可以假設中的最大數(shù),則可以找到   ▲   (用表示),由此可知,這與假設矛盾!所以數(shù)集沒有最大數(shù).

 

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:填空題

在解決問題:“證明數(shù)集A={x|2<x≤3}沒有最小數(shù)”時,可用反證法證明.假設a(2<a≤3)是A中的最小數(shù),則取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,與假設中“a是A中的最小數(shù)”矛盾!那么對于問題:“證明數(shù)集B={x|x=
n
m
,m,n∈N*,并且n<m}
沒有最大數(shù)”,也可以用反證法證明.我們可以假設x=
n0
m0
是B中的最大數(shù),則可以找到x'=______(用m0,n0表示),由此可知x'∈B,x'>x,這與假設矛盾!所以數(shù)集B沒有最大數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年上海市十校高三(下)聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

在解決問題:“證明數(shù)集A={x|2<x≤3}沒有最小數(shù)”時,可用反證法證明.假設a(2<a≤3)是A中的最小數(shù),則取,可得:,與假設中“a是A中的最小數(shù)”矛盾!那么對于問題:“證明數(shù)集沒有最大數(shù)”,也可以用反證法證明.我們可以假設是B中的最大數(shù),則可以找到x'=    (用m,n表示),由此可知x'∈B,x'>x,這與假設矛盾!所以數(shù)集B沒有最大數(shù).

查看答案和解析>>

同步練習冊答案