對于函數(shù)f(x)=下列四個(gè)命題中,錯誤的個(gè)數(shù)為(    )

①該函數(shù)的值域?yàn)椋?1,1]  ②當(dāng)且僅當(dāng)x=2kπ+ (k∈Z)時(shí),該函數(shù)取得最大值1  ③該函數(shù)是以π為最小正周期的周期函數(shù)  ④當(dāng)且僅當(dāng)2kπ+π<x<2kπ+ (k∈Z)時(shí),f(x)<0

A.1                B.2                  C.3                 D.4

解析:畫出f(x)的圖象如圖.黑體為函數(shù)圖象.

①值域?yàn)椋?,1];②當(dāng)x=2kπ+或x=2kπ時(shí),取得最大值;③最小正周期為2π;④正確.

答案:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a+
22x+1
(x∈R)
,
(1)用定義證明:f(x)在R上是單調(diào)減函數(shù);
(2)若f(x)是奇函數(shù),求a值;
(3)在(2)的條件下,解不等式f(2t+1)+f(t-5)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使?f(x0)?=x0成立,則稱x0f(x)的不動點(diǎn),已知函數(shù)?f(x)?=ax2+?(b+1)x+(b-1)(a≠0).??

(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動點(diǎn);?

(2)若對任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動點(diǎn),求a的取值范圍;?

(3)在(2)的條件下,若y=f(x)圖象上AB兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動點(diǎn),且A、B兩點(diǎn)關(guān)于直線y=kx+對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩公司同時(shí)開發(fā)同一種新產(chǎn)品,經(jīng)測算,對于函數(shù)f(x),g(x)以及任意的x≥0,當(dāng)甲公司投入x萬元做宣傳時(shí),若乙公司投入的宣傳費(fèi)小于f(x)萬元,則乙公司對這一新產(chǎn)品的開發(fā)有失敗的風(fēng)險(xiǎn),否則沒有失敗的風(fēng)險(xiǎn);當(dāng)乙公司投入x萬元做宣傳時(shí),若甲公司投入的宣傳費(fèi)小于g(x)萬元,則甲公司這一新產(chǎn)品的開發(fā)有失敗的風(fēng)險(xiǎn),否則沒有失敗的風(fēng)險(xiǎn).

(1)試解釋f(0)=10,g(0)=20的實(shí)際意義;

(2)設(shè)f(x)= x+10,g(x)=+20,甲、乙兩公司為了避免惡性競爭,經(jīng)過協(xié)商,同意在雙方均無失敗風(fēng)險(xiǎn)的情況下盡可能少地投入宣傳費(fèi)用,問甲、乙兩公司各應(yīng)投入多少宣傳費(fèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

       對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0f(x)的不動點(diǎn)  已知函數(shù)f(x)=ax2+(b+1)x+(b–1)(a≠0)

(1)若a=1,b=–2時(shí),求f(x)的不動點(diǎn);

(2)若對任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動點(diǎn),求a的取值范圍;

(3)在(2)的條件下,若y=f(x)圖像上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動點(diǎn),且A、B關(guān)于直線y=kx+對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆遼寧省盤錦市高二下期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題

對于函數(shù)f(x),在使f(x)≥M成立的所有常數(shù)M中,把M中的最大值稱為函

數(shù)f(x)的“下確界”,則函數(shù)的下確界為(     )

A.          B.          C. 1        D. 2

 

查看答案和解析>>

同步練習(xí)冊答案