精英家教網 > 高中數學 > 題目詳情
已知拋物線C1x2=4y和圓C2x2+(y-1)2=1,直線l過C1焦點,從左到右依次交C1,C2于A,B,C,D四點,則
AB
CD
=
1
1
分析:設拋物線的焦點為F,則|AB|=y1,|CD|=y2,從而可得
AB
CD
=|AB||CD|=y1y2,設出直線方程,代入拋物線方程,利用韋達定理,即可得到結論.
解答:解:設拋物線的焦點為F,A的坐標為(x1,y1),D的坐標為(x2,y2);
則|AB|=|AF|-|BF|=y1+1-1=y1,
同理|CD|=y2,
AB
CD
=|AB||CD|=y1y2,
設直線l的方程為y=kx+1,代入拋物線方程,可得x2-4kx-4=0
∴x1+x2=4k,x1x2=-4
∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1=1
AB
CD
=1
故答案為:1
點評:本題考查圓錐曲線的性質和應用,考查直線與拋物線的位置關系,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知拋物線C1:x2=y,圓C2:x2+(y-4)2=1的圓心為點M
(Ⅰ)求點M到拋物線C1的準線的距離;
(Ⅱ)已知點P是拋物線C1上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C1于A,B兩點,若過M,P兩點的直線l垂直于AB,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C1:x2+by=b2經過橢圓C2
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點.設Q(3,b),又M,N為C1與C2不在y軸上的兩個交點,若△QMN的重心(中線的交點)在拋物線C1上,
(1)求C1和C2的方程.
(2)有哪幾條直線與C1和C2都相切?(求出公切線方程)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•臺州一模)已知拋物線C1:x2=2py(p>0)上縱坐標為p的點到其焦點的距離為3.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)過點P(0,-2)的直線交拋物線C1于A,B兩點,設拋物線C1在點A,B處的切線交于點M,
(。┣簏cM的軌跡C2的方程;
(ⅱ)若點Q為(。┲星C2上的動點,當直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時,試判斷
kPQ
kAQ
+
kPQ
kBQ
是否為常數?若是,求出這個常數;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C1:x2=2y的焦點為F,以F為圓心的圓C2交C1于A,B,交C1的準線于C,D,若四邊形ABCD是矩形,則圓C2的方程為( 。
A、x2+(y-
1
2
)2=3
B、x2+(y-
1
2
)2=4
C、x2+(y-1)2=12
D、x2+(y-1)2=16

查看答案和解析>>

同步練習冊答案