已知橢圓的離心率,A,B分別為橢圓的長軸和短軸的端點,M為AB的中點,O為坐標原點,且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點,求△POQ面積最大時直線的方程.

解:(Ⅰ)橢圓的方程為.
(Ⅱ)當直線的方程為時,面積最大.

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(12分)直線與雙曲線相交于兩點,
(1)求的取值范圍
(2)當為何值時,以為直徑的圓過坐標原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知焦點在坐標軸上的雙曲線,它的兩條漸近線方程為,焦點到漸近線的距離為,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經過點(,1),O為坐標原點。

(Ⅰ)求橢圓E的標準方程;
。á颍﹫AO是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點,過M作圓O的兩條切線,切點分別為P、Q,當∠PMQ=60°時,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分) 如圖,設P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且MD=PD.

(Ⅰ)當P在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知橢圓的離心率為,定點,橢圓短軸的端點是,,且.
(1)求橢圓的方程;
(2)設過點且斜率不為的直線交橢圓,兩點.試問軸上是否存在定點,使平分?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓O:軸于A,B兩點,曲線C是以為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點連結PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q

(1)求橢圓C的標準方程;
(2)若點P的坐標為(1,1),求證:直線PQ與圓相切;
(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)
已知橢圓C:(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓中心在坐標原點,是它的兩個頂點,直線與AB相交于點D,與橢圓相交于E、F兩點.
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.

查看答案和解析>>

同步練習冊答案