【題目】已知數(shù)列{an}滿足an+1=an﹣2an+1an , an≠0且a1=1
(1)求證:數(shù)列 是等差數(shù)列,并求出{an}的通項(xiàng)公式;
(2)令 ,求數(shù)列{bn}的前2n項(xiàng)的和T2n .
【答案】
(1)證明:∵an+1=an﹣2an+1an,an≠0且a1=1,∴ ﹣ =2,
∴數(shù)列 是等差數(shù)列,首項(xiàng)為1,等差數(shù)列為2.
∴ =1+2(n﹣1)=2n﹣1,解得an=
(2)解: =(﹣1)n﹣1 =(﹣1)n﹣1 ,
∴T2n= ﹣ +…+ ﹣
= =
【解析】(1)由an+1=an﹣2an+1an , an≠0且a1=1,取倒數(shù)可得 ﹣ =2,即可得出.(2) =(﹣1)n﹣1 =(﹣1)n﹣1 ,利用“裂項(xiàng)求和”即可得出.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在2012﹣2016年的收入與支出情況如表所示:
收入x(億元) | 2.2 | 2.6 | 4.0 | 5.3 | 5.9 |
支出y(億元) | 0.2 | 1.5 | 2.0 | 2.5 | 3.8 |
根據(jù)表中數(shù)據(jù)可得回歸直線方程為 =0.8x+ ,依次估計(jì)如果2017年該公司收入為7億元時(shí)的支出為( )
A.4.5億元
B.4.4億元
C.4.3億元
D.4.2億元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 .
(1)求sinB的值;
(2)若a=4,求△ABC的面積S的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x,焦點(diǎn)為F,過點(diǎn)P(﹣1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點(diǎn),直線AF,BF分別交拋物線C于M,N兩點(diǎn),若 + =18,則k= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣t|(t∈R)
(1)t=2時(shí),求不等式f(x)>2的解集;
(2)若對于任意的t∈[1,2],x∈[﹣1,3],f(x)≥a+x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ
(1)求圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P(1,2),設(shè)圓C與直線l交于點(diǎn)A、B,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{xn}的前n項(xiàng)和為Sn , 且4xn﹣Sn﹣3=0(n∈N*);
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)若數(shù)列{yn}滿足yn+1﹣yn=xn(n∈N*),且y1=2,求滿足不等式 的最小正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m>1,在約束條件 下,目標(biāo)函數(shù)z=x+my的最大值小于2,則m的取值范圍為( )
A.(1, )
B.( ,+∞)
C.(1,3)
D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)經(jīng)過點(diǎn) ,離心率為 ,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點(diǎn)P為橢圓C上一動(dòng)點(diǎn),點(diǎn)A(3,0)與點(diǎn)P的垂直平分線交y軸于點(diǎn)B,求|OB|的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com