在數(shù)列{}中,,并且對任意都有成立,令.
(Ⅰ)求數(shù)列{}的通項公式;
(Ⅱ)設(shè)數(shù)列{}的前n項和為,證明:
(Ⅰ)
(Ⅱ)見解析
【解析】
試題分析:(I)、當(dāng)n=1時,先求出b1=3,當(dāng)n≥2時,求得b n+1與bn的關(guān)系即可知道bn為等差數(shù)列,然后便可求出數(shù)列{bn}的通項公式;
(II)根據(jù)(I)中求得的bn的通項公式先求出數(shù)列{}的表達(dá)式,然后求出Tn的表達(dá)式,根據(jù)不等式的性質(zhì)即可證明<Tn<
解:(Ⅰ)當(dāng)n=1時,,當(dāng)時,
由得所以------------4分
所以數(shù)列是首項為3,公差為1的等差數(shù)列,
所以數(shù)列的通項公式為-------------5分
(Ⅱ)------------------------------------7分
-------------------11分
可知Tn是關(guān)于變量n的增函數(shù),當(dāng)n趨近無窮大時,的值趨近于0,
當(dāng)n=1時Tn取最小值,故有----------------14分
考點:本題主要考查了數(shù)列的遞推公式以及等差數(shù)列與不等式的結(jié)合,考查了學(xué)生的計算能力和對數(shù)列的綜合掌握,解題時注意整體思想和轉(zhuǎn)化思想的運用,屬于中檔題
點評:解決該試題的關(guān)鍵是運用整體的思想來表示出遞推關(guān)系,然后進(jìn)而利用函數(shù)的單調(diào)性的思想來放縮得到證明。
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
1 |
an |
an |
n |
3 |
4 |
1 |
n+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
an |
2an+1 |
1 |
an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
1 |
an |
an |
n |
1 |
3 |
3 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:陜西省模擬題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com