設(shè),則對任意實數(shù)a,b,“a+b≥0”是“f(a)+f(b)≥0”的    條件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”之一)
【答案】分析:已知函數(shù),根據(jù)f(x)=-f(x)可知它是奇函數(shù),然后由題意看命題“a+b≥0”與命題f(a)+f(b)≥0”是否能互推,然后根據(jù)必要條件、充分條件和充要條件的定義進(jìn)行判斷.
解答:解:∵
∴f(-x)=-x3+lg(-)=-(x3+)=-f(x),
∴f(x)為奇函數(shù),
∵f′(x)=3x2+=3x2+lge()>0,
∴f(x)為增函數(shù),
∵a+b≥0,⇒a≥-b,
∴f(a)≥f(-b),
∴f(a)≥-f(b),
∴f(a)+f(b)≥0,
反之也成立,
∴“a+b≥0”是“f(a)+f(b)≥0”的充要條件,
故答案為充要條件.
點(diǎn)評:此題主要考查利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,還考查了必要條件、充分條件和充要條件的定義,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省蘭州一中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè),則對任意實數(shù)a,b,a+b≥0是f(a)+f(b)≥0的( )
A.充分必要條件
B.充分而非必要條件
C.必要而非充分條件
D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(4)(解析版) 題型:選擇題

設(shè),則對任意實數(shù)a,b,a+b≥0是f(a)+f(b)≥0的( )
A.充分必要條件
B.充分而非必要條件
C.必要而非充分條件
D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省茂名市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

設(shè),則對任意實數(shù)a,b,a+b≥0是f(a)+f(b)≥0的( )
A.充分必要條件
B.充分而非必要條件
C.必要而非充分條件
D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)(理科)一輪復(fù)習(xí)講義:1.2 命題及其關(guān)系、充分條件與必要條件(解析版) 題型:解答題

設(shè),則對任意實數(shù)a,b,“a+b≥0”是“f(a)+f(b)≥0”的    條件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”之一)

查看答案和解析>>

同步練習(xí)冊答案