精英家教網 > 高中數學 > 題目詳情
已知y=f(x)是定義在R上的奇函數,且當x>0時不等式f(x)+xf′(x)<0成立,若a=30.3•f(30.3),b=logπ3.f(logπ3),c=log3
1
9
•f(log3
1
9
)
,則a,b,c大小關系是( 。
A.b>a>cB.a>b>cC.a>c>bD.b>c>a
令h(x)=xf(x),
∵函數y=f(x)以及函數y=x是R上的奇函數
∴h(x)=xf(x)是R上的偶函數,
又∵當x>0時,h′(x)=f(x)+xf′(x)<0,
∴函數h(x)在x∈(0,+∞)時的單調性為單調遞減函數;
∴h(x)在x∈(-∞,0)時的單調性為單調遞增函數.
若a=30.3•f(30.3),b=logπ3.f(logπ3),c=log3
1
9
•f(log3
1
9
)
,
又∵函數y=f(x)是定義在R上的奇函數,
∴f(0)=0,從而h(0)=0
因為log3
1
9
=-2,所以f(log3
1
9
)=f(-2)=-f(2),
由0<logπ3<1<30.3<30.5<2
所以h(logπ3)>h(30.3)>h(2)=f(log3
1
9
),
即:b>a>c
故選A
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2x+
5x
的定義域為(0,+∞).設點P是函數圖象上的任意一點,過點P分別作直線y=2x和y軸的垂線,垂足分別為M、N.
(1)|PM|•|PN|是否為定值?若是,求出該定值;若不是,說明理由;
(2)設點O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x+
ax
的定義域為(0,+∞),a>0且當x=1時取得最小值,設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值;
(2)問:PM•PN是否為定值?若是,則求出該定值,若不是,請說明理由;
(3)設O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x3-ax+b存在極值點.
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點分別為A、B.
(ⅰ)證明:a=b;
(ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習冊答案