【題目】已知函數(shù)f(x)=ax2+21nx.
(1)求f(x)的單調(diào)區(qū)間.
(2)若f(x)在(0,1]上的最大值是﹣2,求a的值.
(3)記g(x)=f(x)+(a﹣1)lnx+1,當(dāng)a≤﹣2時(shí),若對(duì)任意x1 , x2∈(0,+∞),總有|g(x1)﹣g(x2)|≥k|x1﹣x2|成立,試求k的最大值.
【答案】
(1)解:函數(shù)f(x)=ax2+21nx(x>0)的導(dǎo)數(shù)為f′(x)=2ax+ = ,
當(dāng)a≥0時(shí),f′(x)>0,f(x)遞增;
當(dāng)a<0時(shí),f′(x)>0解得0<x< ;f′(x)<0解得x> .
即有a≥0時(shí),f(x)的增區(qū)間為(0,+∞);
a<0時(shí),f(x)的增區(qū)間為(0, );減區(qū)間為( ,+∞)
(2)解:由(1)可得a≥0時(shí),f(x)在(0,1]遞增,f(1)取得最大,且為a=﹣2,舍去;
a<0時(shí),若1≤ 即﹣1≤a<0時(shí),f(x)在(0,1]遞增,
則f(1)=a取得最大值,且為a=﹣2<﹣1,不成立;
若1> 即a<﹣1時(shí),f(x)在(0, )遞增,( ,1]遞減,.
則f( 取得最大值,且為﹣1+2ln =﹣2,解得a=﹣e<﹣1,成立.
綜上可得a=﹣e
(3)解:g(x)=f(x)+(a﹣1)lnx+1=ax2+(a+1)lnx+1,
g′(x)=2ax+ <0,(a≤﹣2),即有g(shù)(x)在(0,+∞)遞減,
令x1<x2,則g(x1)>g(x2),
若對(duì)任意x1,x2∈(0,+∞),總有|g(x1)﹣g(x2)|≥k|x1﹣x2|成立,
即為g(x1)﹣g(x2)≥k(x2﹣x1),即g(x1)+kx1≥g(x2)+kx2,
則h(x)=g(x)+kx在(0,+∞)遞減,
即有h′(x)=g′(x)+k≤0恒成立,
則﹣k≥2ax+ 的最大值,
由a≤﹣2,2ax+ ≤﹣4x﹣ =﹣(4x+ )≤﹣2 =﹣4,
當(dāng)且僅當(dāng)x= 時(shí),取得最大值﹣4,
則﹣k≥﹣4,即k≤4,則k的最大值為4
【解析】(1)求出f(x)的導(dǎo)數(shù),討論a≥0時(shí),a<0時(shí),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間;(2)由(1)可得,可得a≥0時(shí),f(x)在(0,1]遞增,f(1)最大為﹣2,解方程可得;a<0時(shí),求得極值點(diǎn),與區(qū)間( ),1]的關(guān)系,可得最大值,解方程可得a的值;(3)求得g(x)的導(dǎo)數(shù),判斷符號(hào)可得單調(diào)性,再由條件可得h(x)=g(x)+kx遞減,運(yùn)用導(dǎo)數(shù),結(jié)合基本不等式可得k的最大值.
【考點(diǎn)精析】通過靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn) P 與定點(diǎn)的距離和它到定直線 x 4 的距離的比是1: 2 ,記動(dòng)點(diǎn) P 的軌跡為曲線 E.
(1)求曲線 E 的方程;
(2)設(shè) A 是曲線 E 上的一個(gè)點(diǎn),直線 AF 交曲線 E 于另一點(diǎn) B,以 AB 為邊作一個(gè)平行四邊形,頂點(diǎn) A、B、C、D 都在軌跡 E 上,判斷平行四邊形 ABCD 能否為菱形,并說明理由;
(3)當(dāng)平行四邊形 ABCD 的面積取到最大值時(shí),判斷它的形狀,并求出其最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的左、右焦點(diǎn)為, ,右頂點(diǎn)為,上頂點(diǎn)為,若, 與軸垂直,且.
(1)求橢圓的方程;
(2)過點(diǎn)且不垂直與坐標(biāo)軸的直線與橢圓交于, 兩點(diǎn),已知點(diǎn),當(dāng)時(shí),求滿足的直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】潮州統(tǒng)計(jì)局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率為,已知但在橢圓上.
(1)求橢圓的方程;
(2)過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn),使得成立?如果存在,求出的取值范圍;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù),若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)當(dāng)a>0時(shí),解關(guān)于x的不等式f(x)<0;
(2)若當(dāng)a>0時(shí),f(x)<0在x [1,2]上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,an>0,(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3與a5的等比中項(xiàng)為2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an , 數(shù)列{bn}的前n項(xiàng)和為Sn , 當(dāng) 最大時(shí),求n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com