15.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值為10.

分析 畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值.

解答 解:由約束條件得到可行域如圖:目標(biāo)函數(shù)變形為y=-2x+z,
當(dāng)此直線經(jīng)過圖中B時(shí)在y軸的截距最大,z最大,
由$\left\{\begin{array}{l}{x-y=-1}\\{2x-y=2}\end{array}\right.$得到b(3,4)得到z=10;
故答案為:10.

點(diǎn)評 本題考查了簡單線性規(guī)劃問題;關(guān)鍵是正確畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最值.體現(xiàn)了數(shù)形結(jié)合的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)

(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.點(diǎn)(-1,1)到直線x+y-2=0的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在長方形ABCD中,AB=2,AD=1,E為DC的中點(diǎn),將△DAE沿AE折起,平面DAE⊥平面ABCE,連DB,DC,BE.

(Ⅰ)求證:BE⊥平面ADE;
(Ⅱ)求AC與平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.己知復(fù)數(shù)z=cosθ+isinθ(i是虛數(shù)單位),則$\frac{1+{z}^{2}}{z}$=(  )
A.cosθ+isinθB.2cosθC.2sinθD.isin2θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=cosx(sinx+cosx)-$\frac{1}{2}$.
(1)若0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)當(dāng)m≥4時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3對任意的m∈(4,6)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知a2,b2,c2成等差數(shù)列,則sinB最大值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{3}{4}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓$C:\frac{x^2}{16}+\frac{y^2}{9}=1$的左、右焦點(diǎn)分別為F1、F2,過F2的直線交橢圓C于P、Q兩點(diǎn),若|F1P|+|F1Q|=10,則|PQ|等于(  )
A.8B.6C.4D.2

查看答案和解析>>

同步練習(xí)冊答案