設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R).若x=-1為函數(shù)f(x)ex的一個(gè)極值點(diǎn),則下列圖像不可能為y=f(x)圖像的是________.(填寫序號(hào))

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)+xf′(x)>0(其中f′(x)是f(x)的導(dǎo)函數(shù)),設(shè)a=(4)f(4),b=f(),c=(lg)f(lg),則a,b,c由大到小的關(guān)系是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),則實(shí)數(shù)的取值范圍是  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

我們把形如y=f(x)φ(x)的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得ln y=φ(x)lnf(x),兩邊求導(dǎo)得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].運(yùn)用此方法可以探求得y=x的單調(diào)遞增區(qū)間是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

函數(shù)f(x)=-x3+mx2+1(m≠0)在(0,2)內(nèi)的極大值為最大值,則m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結(jié)論:
①f(0)f(1)>0;        ②f(0)f(1)<0;
③f(0)f(3)>0;        ④f(0)f(3)<0.
其中正確結(jié)論的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

曲線f(x)=·ex-f(0)x+x2在點(diǎn)(1,f(1))處的切線方程為_(kāi)___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

[2013·江西高考]設(shè)函數(shù)f(x)在(0,+∞)內(nèi)可導(dǎo),且f(ex)=x+ex,則f′(1)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若曲線在點(diǎn)(1,2)處的切線經(jīng)過(guò)坐標(biāo)原點(diǎn),則=        

查看答案和解析>>

同步練習(xí)冊(cè)答案