以等腰△ABC的斜邊AB上的高CD為棱折成一個60°的二面角,使B到B′的位置,已知斜邊AB=2,則頂點A到平面CB′D的距離是
 
考點:點、線、面間的距離計算
專題:計算題,空間位置關(guān)系與距離
分析:證明平面CDB′⊥平面AB′D,過A作AE⊥BD′,則AE⊥平面CDB′,可得AE是頂點A到平面CB′D的距離,即可得出結(jié)論.
解答: 解:由題意,∠ADB′=60°,CD⊥平面AB′D,∴平面CDB′⊥平面AB′D,
過A作AE⊥BD′,則AE⊥平面CDB′,
∴AE是頂點A到平面CB′D的距離,
∵△AB′D為等邊三角形,AD=1,
∴AE=
3
2

故答案為:
3
2
點評:本題考查點、線、面間的距離計算,考查線面、面面垂直,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α=
π
6

(1)寫出所有與α終邊相同的角β;
(2)寫出在(-4π,2π)內(nèi)與α終邊相同的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-1,-2,2,4},B={-1,0,2},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個正四棱錐的底面邊長是
2
,側(cè)棱長為2,則其外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
6
x+2
+
8-x
,x∈[-1,4],則f(x)的最大為
 
最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

e1
e2
是夾角為
π
3
的兩個單位向量,則
e1
e2
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩平面α、β,直線a、b、c,給出下列命題,其中正確命題的序號是
 


①異面直線a和c在平面內(nèi)α的射影必相交.  
②若a和b與c成等角,則a∥b.
③若a⊥c,b⊥c,則a∥b.  
④a∥α,b∥α,則a∥b.  
⑤若a與b沒有公共點,則a∥b.
⑥若a和α內(nèi)無數(shù)條直線沒有公共點,則a∥α.
⑦若a∥α,b?α,則a∥b.
⑧若α∥β,a?α,b?β,則a∥b.
⑨若a∥b,b∥c,則a∥c.
⑩α∥β,β∥γ,則α∥γ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的方程為2x2-y2=2,直線l交曲線C與A、B兩點,又A、B的中點坐標(biāo)為(2,1),則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將一個邊長為1的正三角形的每條邊三等分,以中間一段為邊向形外作正三角形,并擦去中間一段,得圖(2),如此繼續(xù)下去,得圖(3)…

則前n個圖形的邊數(shù)的總和為
 

查看答案和解析>>

同步練習(xí)冊答案