已知直線l過(guò)拋物線C的焦點(diǎn),且與C的對(duì)稱軸垂直.l與C交于A,B兩點(diǎn),|AB|=12,P為C的準(zhǔn)線上一點(diǎn),則△ABP的面積為( 。
A.18B.24C.36D.48
設(shè)拋物線的解析式為y2=2px(p>0),
則焦點(diǎn)為F(
p
2
,0),對(duì)稱軸為x軸,準(zhǔn)線為x=-
p
2

∵直線l經(jīng)過(guò)拋物線的焦點(diǎn),A、B是l與C的交點(diǎn),
又∵AB⊥x軸
∴|AB|=2p=12
∴p=6
又∵點(diǎn)P在準(zhǔn)線上
∴DP=(
p
2
+|-
p
2
|)=p=6
∴S△ABP=
1
2
(DP•AB)=
1
2
×6×12=36
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C過(guò)定點(diǎn)F(-
1
4
,0),且與直線x=
1
4
相切,圓心C的軌跡為E,曲線E與直線l:y=k(x+1)(k∈R)相交于A、B兩點(diǎn).
(I)求曲線E的方程;
(II)當(dāng)△OAB的面積等于
10
時(shí),求k的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線的兩條漸近線方程為直線l1:y=-
x
2
l2:y=
x
2
,焦點(diǎn)在y軸上,實(shí)軸長(zhǎng)為2
3
,O為坐標(biāo)原點(diǎn).
(1)求雙曲線方程;
(2)設(shè)P1,P2分別是直線l1和l2上的點(diǎn),點(diǎn)M在雙曲線上,且
P1M
=2
MP2
,求三角形P1OP2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線y=x-1被y2=x截得的弦長(zhǎng)為( 。
A.3B.2
3
C.
10
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩點(diǎn)F1(-
2
,0)
,F2(
2
,0)
,滿足條件|PF2|-|PF1|=2的動(dòng)點(diǎn)P的軌跡是曲線E,直線l:y=kx-1與曲線E交于A、B兩點(diǎn).
(Ⅰ)求k的取值范圍;
(Ⅱ)如果|AB|=6
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,左焦點(diǎn)為F,過(guò)原點(diǎn)的直線l交橢圓于M,N兩點(diǎn),△FMN面積的最大值為1.
(1)求橢圓E的方程;
(2)設(shè)P,A,B是橢圓E上異于頂點(diǎn)的三點(diǎn),Q(m,n)是單位圓x2+y2=1上任一點(diǎn),使
OP
=m
OA
+n
OB

①求證:直線OA與OB的斜率之積為定值;
②求OA2+OB2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓
x2
8
+
y2
4
=1
上的點(diǎn)到直線x-y+6=0的距離的最小值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的兩焦點(diǎn)分別為F1(-2
2
,0)、F2(2
2
,0),長(zhǎng)軸長(zhǎng)為6,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過(guò)點(diǎn)(0,2)且斜率為1的直線交橢圓C于A、B兩點(diǎn),求線段AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三角形△ABC的兩頂點(diǎn)為B(-2,0),C(2,0),它的周長(zhǎng)為10,求頂點(diǎn)A軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案