【題目】已知任意角α的終邊經(jīng)過點(diǎn)P(﹣3,m),且cosα=﹣
(1)求m的值.
(2)求sinα與tanα的值.

【答案】
(1)解:∵角α的終邊經(jīng)過點(diǎn)P(﹣3,m),∴|OP|=

又∵cosα=﹣ = = ,∴m2=16,∴m=±4


(2)解:m=4,得P(﹣3,4),|OP|=5,∴sinα= ,tanα=﹣ ;

m=﹣4,得P(﹣3,﹣4),|OP|=5,∴sinα=﹣ ,tanα=


【解析】(1)先求出|OP|,再利用cosα=﹣ ,即可求m的值.(2)分類討論,即可求sinα與tanα的值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角函數(shù)線的相關(guān)知識(shí),掌握三角函數(shù)線:,,以及對(duì)同角三角函數(shù)基本關(guān)系的運(yùn)用的理解,了解同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最大值為2.

(Ⅰ)求函數(shù)上的單調(diào)遞減區(qū)間;

(Ⅱ)中,角,所對(duì)的邊分別是,,且,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)觀測(cè)生產(chǎn)某種零件的某工廠25名工人的日加工零件數(shù)(單位:件),獲得數(shù)據(jù)如下:
30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.
根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組

頻數(shù)

頻率

[25,30]

3

0.12

(30,35]

5

0.20

(35,40]

8

0.32

(40,45]

n1

f1

(45,50]

n2

f2


(1)確定樣本頻率分布表中n1 , n2 , f1和f2的值;
(2)根據(jù)上述頻率分布表,畫出樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,求在該廠任取4人,至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 的中點(diǎn), 是棱上的點(diǎn), ,

(Ⅰ)求證:平面平面;

(Ⅱ)若二面角大小為,設(shè),試確定的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)既是奇函數(shù),又是周期為3的周期函數(shù),當(dāng)x∈(0, )時(shí),f(x)=sinπx,f( )=0,則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是(
A.9
B.7
C.5
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,以原點(diǎn)為圓心,橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線相切.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知點(diǎn)為動(dòng)直線與橢圓的兩個(gè)交點(diǎn),問:在軸上是否存在定點(diǎn),使得為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各項(xiàng)均為非負(fù)整數(shù)的數(shù)列同時(shí)滿足下列條件:

;② ;③的因數(shù)().

(Ⅰ)當(dāng)時(shí),寫出數(shù)列的前五項(xiàng);

(Ⅱ)若數(shù)列的前三項(xiàng)互不相等,且時(shí), 為常數(shù),求的值;

(Ⅲ)求證:對(duì)任意正整數(shù),存在正整數(shù),使得時(shí), 為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線),其準(zhǔn)線方程為,直線過點(diǎn))且與拋物線交于兩點(diǎn), 為坐標(biāo)原點(diǎn).

(1)求拋物線方程,并證明:的值與直線傾斜角的大小無關(guān);

(2)若為拋物線上的動(dòng)點(diǎn),記的最小值為函數(shù),求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)P和0是兩個(gè)集合,定義集合PQ={x|x∈P,且x≠Q(mào)},如果P={x|log2x<1},Q={x||x﹣2|<1},那么PQ等于

查看答案和解析>>

同步練習(xí)冊(cè)答案