【題目】已知函數(shù)f(x)=2x3+ax2+bx+1的極值點(diǎn)為﹣1和1.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間與極值.
【答案】(1) f(x)=2x3﹣6x+1;(2) 單調(diào)遞增區(qū)間為(﹣∞,﹣1)和(1,+∞),單調(diào)遞減區(qū)間為(﹣1,1),極大值為5,極小值為﹣3.
【解析】
(1)由題意可知:f'(﹣1)=0,f'(1)=0,即可求出a,b的值;
(2)先求出導(dǎo)函數(shù)f'(x),令f'(x)=0求出極值點(diǎn),列表即可求出函數(shù)f(x)的單調(diào)區(qū)間與極值.
(1)f'(x)=6x2+2ax+b,
由題意可知:f'(﹣1)=0,f'(1)=0,
∴,解得,
∴函數(shù)f(x)的解析式為:f(x)=2x3﹣6x+1;
(2)由(1)可得f'(x)=6x2﹣6=6(x+1)(x﹣1),
令f'(x)=0得,x=﹣1,x=1,
列表:
x | (﹣∞,﹣1) | ﹣1 | (﹣1,1) | 1 | (1,+∞) |
f'(x) | + | 0 | ﹣ | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(﹣∞,﹣1)和(1,+∞),單調(diào)遞減區(qū)間為(﹣1,1),
極大值為f(﹣1)=5,極小值為f(1)=﹣3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)圖像在點(diǎn)處的切線斜率為時(shí),求的值,并求此時(shí)函數(shù)的單調(diào)區(qū)間;
(2)若,為函數(shù)的兩個(gè)不同極值點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心在射線上,截直線所得的弦長(zhǎng)為6,且與直線相切.
(1)求圓的方程;
(2)已知點(diǎn),在直線上是否存在點(diǎn)(異于點(diǎn)),使得對(duì)圓上的任一點(diǎn),都有為定值?若存在,請(qǐng)求出點(diǎn)的坐標(biāo)及的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知分別為雙曲線的左、右焦點(diǎn),M為雙曲線右支上一點(diǎn)且滿足,若直線與雙曲線的另一個(gè)交點(diǎn)為N,則的面積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓b2x2+a2y2=a2b2(a>b>0)的兩個(gè)焦點(diǎn)分別是F1、F2,等邊三角形的邊AF1、AF2與該橢圓分別相交于B、C兩點(diǎn),且2|BC|=|F1F2|,則該橢圓的離心率等于( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AC過(guò)定點(diǎn)F(2,0),且與直線x=-2相切,圓心C的軌跡為E,
(1)求圓心C的軌跡E的方程;
(2)若直線l交E與P,Q兩點(diǎn),且線段PQ的中心點(diǎn)坐標(biāo)(1,1),求|PQ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)圓錐內(nèi)作一個(gè)內(nèi)接等邊圓柱(一個(gè)底面在圓錐的底面上,且軸截面是正方形的圓柱),再在等邊圓柱的上底面截得的小圓錐內(nèi)做一個(gè)內(nèi)接等邊圓柱,這樣無(wú)限的做下去.
(1)證明這些等邊圓柱的體積從大到小排成一個(gè)等比數(shù)列;
(2)已知這些等邊圓柱的體積之和為原來(lái)圓錐體積的,求最大的等邊圓柱的體積與圓錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),且3,拋物線的準(zhǔn)線l與x軸交與點(diǎn)C,AA1垂直l于點(diǎn)A1,若四邊形AA1CF的面積為,則準(zhǔn)線l的方程為( )
A.B.C.x=﹣2D.x=﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com