A. | 16cm | B. | 12$\sqrt{3}$cm | C. | 24$\sqrt{3}$cm | D. | 26cm |
分析 將三棱柱展開兩次如圖,不難發(fā)現(xiàn)最短距離是六個矩形對角線的連線,正好相當(dāng)于繞三棱柱轉(zhuǎn)兩次的最短路徑.
解答 解:將正三棱柱ABC-A1B1C1沿側(cè)棱展開,再拼接一次,其側(cè)面展開圖如圖所示,
在展開圖中,最短距離是六個矩形對角線的連線的長度,也即為三棱柱的側(cè)面上所求距離的最小值.
由已知求得矩形的長等于6×4=24,寬等于10,由勾股定理d=$\sqrt{2{4}^{2}+1{0}^{2}}$=26cm.
故選D.
點評 本題考查棱柱的結(jié)構(gòu)特征,空間想象能力,幾何體的展開與折疊,體現(xiàn)了轉(zhuǎn)化(空間問題轉(zhuǎn)化為平面問題,化曲為直)的思想方法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 充分必要 | ||
C. | 必要不充分 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$1 | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4$\sqrt{2}$ | B. | 3+$\sqrt{5}$ | C. | $\sqrt{2}$+1 | D. | 3+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com