精英家教網 > 高中數學 > 題目詳情

已知雙曲線數學公式的左支上一點P到左焦點的距離為10,則點P到右焦點的距離為________.

18
分析:由雙曲線的方程可得 a=4,根據雙曲線的定義求出點P到右焦點的距離.
解答:由雙曲線的方程可得 a=4,由雙曲線的定義可得 點P到右焦點的距離等于 2a
加上點P到左焦點的距離,故點P到右焦點的距離為 8+10=18,
故答案為:18.
點評:本題考查雙曲線的定義和標準方程,得到點P到右焦點的距離等于 2a 加上點P到左焦點的距離,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右兩個焦點分別是F1,F(xiàn)2,P是它左支上的一點,P到左準線的距離為d.
(1)若y=
3
x是已知雙曲線的一條漸近線,是否存在P點,使d,|PF1|,|PF2|成等比數列?若存在,寫出P點坐標,若不存在,說明理由;
(2)在已知雙曲線的左支上,使d,|PF1|,|PF2|成等比數列的P點存在時,求離心率e的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
4
-
y2
9
=1
的左右焦點,AB是過F1的一條弦(A、B均在雙曲線的左支上).
(1)若△ABF2的周長為30,求|AB|;
(2)若F1AF2=
π
3
,求△F1AF2的面積.

查看答案和解析>>

科目:高中數學 來源:高三數學教學與測試 題型:044

已知雙曲線)的左、右兩個焦點分別是,P是它左支上一點,P到左準線的距離為d.(1)若y=是已知雙曲線的一條漸近線,則是否存在P點,使d,成等比數列?若存在,寫出點P的坐標;若不存在,說明理由.(2)在已知雙曲線的左支上,使d,成等比數列的P點存在時,求離心率e的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線-=1(a>0,b>0)的左、右兩個焦點分別為F1、F2,P為雙曲線左支上的一點,P到左準線的距離為d.

(1)若雙曲線的一條漸近線是y=x,問是否存在點P使d,|PF1|,|PF2|成等比數列?若存在,求出P點坐標,若不存在,說明理由;

(2)在已知雙曲線的左支上使d,|PF1|,|PF2|成等比數列的點P存在時,求離心率e的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學復習(第8章 圓錐曲線):8.2 雙曲線(解析版) 題型:解答題

已知雙曲線的左右兩個焦點分別是F1,F(xiàn)2,P是它左支上的一點,P到左準線的距離為d.
(1)若y=x是已知雙曲線的一條漸近線,是否存在P點,使d,|PF1|,|PF2|成等比數列?若存在,寫出P點坐標,若不存在,說明理由;
(2)在已知雙曲線的左支上,使d,|PF1|,|PF2|成等比數列的P點存在時,求離心率e的取值范圍.

查看答案和解析>>

同步練習冊答案