已知偶函數(shù)f(x)在(-∞,-2)上是增函數(shù),則下列關(guān)系式中成立的是( 。
A、f(-
7
2
)<f(-3)<f(4)
B、f(-3)<f(-
7
2
)<f(4)
C、f(4)<f(-3)<f(-
7
2
D、f(4)<f(
7
2
)<f(-3)
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,即可得到結(jié)論.
解答: 解:∵偶函數(shù)f(x)在(-∞,-2)上是增函數(shù),
∴函數(shù)f(x)在(2,+∞)上是減函數(shù),
則f(4)<f(
7
2
)<f(3),
即f(4)<f(
7
2
)<f(-3),
故選:D
點(diǎn)評(píng):本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積等于( 。
A、
1
6
a3
B、
1
2
a3
C、
2
3
a3
D、
5
6
a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域?yàn)镽的函數(shù)f(x)=
n-g(x)
m+2g(x)
是奇函數(shù).
(1)確定y=g(x)的解析式;
(2)求m、n的值;
(3)判斷f(x) 的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若(a+b)(a-b)=c(b+c),則A=( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx-2
(1)若f(x)<0得解集為(-
1
3
,2)
,求a,b的值;
(2)若b=3a-2,且函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)設(shè)a>0,P=
1
2
[f(x1)+f(x2)],Q=f(
x1+x2
2
)
,試比較P與Q的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A(7,8),B(3,5),C(4,3),M,N是AB,AC的中點(diǎn),D是BC的中點(diǎn),MN與AD交于點(diǎn)F,求
DF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是R上的偶函數(shù),且在(-∞,0)上為減函數(shù),若x1<0,x1+x2>0,則(  )
A、f(x1)>f(x2
B、f(x1)=f(x2
C、f(x1)<f(x2
D、不能確定f(x1)與f(x2)的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈[1,+∞)時(shí),函數(shù)f(x)=x+
4
x
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:2i4=( 。
A、-2B、2
C、-2iD、2 i

查看答案和解析>>

同步練習(xí)冊(cè)答案