【題目】已知函數(shù)f(x)=x|x2-12|的定義域?yàn)閇0,m],值域?yàn)閇0,am2],則實(shí)數(shù)a的取值范圍是_____.
【答案】a≥1
【解析】僅考慮函數(shù)f(x)在x>0時(shí)的情況,可知函數(shù)f(x)在x=2時(shí),取得極大值16.
令x3-12x=16,解得,x=4.作出函數(shù)的圖象(如右圖所示).
函數(shù)f(x)的定義域?yàn)閇0,m],值域?yàn)閇0,am2],分為以下情況考慮:
①當(dāng)0<m<2時(shí),函數(shù)的值域?yàn)閇0,m(12-m2)],有m(12-m2)=am2,所以a=-m,因?yàn)?<m<2,所以a>4;
②當(dāng)2≤m≤4時(shí),函數(shù)的值域?yàn)閇0, 16],有am2=16,所以a=,因?yàn)?≤m≤4,所以1≤a≤4;
③當(dāng)m>4時(shí),函數(shù)的值域?yàn)閇0,m(m2-12)],有m(m2-12)=am2,所以a=m-,因?yàn)?/span>m>4,所以a>1.
綜上所述,實(shí)數(shù)a的取值范圍是a≥1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 與 共線,求邊長(zhǎng)b和c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=x2+ax+b,g(x)=x2+cx+d,且f(2x+1)=4g(x),f′(x)=g′(x),f(5)=30,求a,b,c,d的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線 的參數(shù)方程為 ( 為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線 上的點(diǎn)按坐標(biāo)變換 得到曲線 .
(1)求曲線 的普通方程;
(2)若點(diǎn) 在曲線 上,點(diǎn) ,當(dāng)點(diǎn) 在曲線 上運(yùn)動(dòng)時(shí),求 中點(diǎn) 的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,向量 , ,且 .
(1)求A的大小;
(2)現(xiàn)在給出下列三個(gè)條件:①a=1;② ;③B=45°,試從中選擇兩個(gè)條件以確定△ABC,求出所確定的△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次數(shù)學(xué)測(cè)驗(yàn)共有10道選擇題,每道題共有四個(gè)選項(xiàng),且其中只有一個(gè)選項(xiàng)是正確的,評(píng)分標(biāo)準(zhǔn)規(guī)定:每選對(duì)1道題得5分,不選或選錯(cuò)得0分,某考試每道都選并能確定其中有6道題能選對(duì),其余4道題無(wú)法確定正確選項(xiàng),但這4道題中有2道能排除兩個(gè)錯(cuò)誤選項(xiàng),另2題只能排除一個(gè)錯(cuò)誤選項(xiàng),于是該生做這4道題時(shí)每道題都從不能排除的選項(xiàng)中隨機(jī)挑選一個(gè)選項(xiàng)做答,且各題做答互不影響.
(Ⅰ)求該考生本次測(cè)驗(yàn)選擇題得50分的概率;
(Ⅱ)求該考生本次測(cè)驗(yàn)選擇題所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐曲線 ( 為參數(shù))和定點(diǎn) , F1 、 F2 是此圓錐曲線的左、右焦點(diǎn),以原點(diǎn) O 為極點(diǎn),以 x 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線 AF2 的直角坐標(biāo)方程;
(2)經(jīng)過點(diǎn) F1 且與直線AF2 垂直的直線 l 交此圓錐曲線于M,N 兩點(diǎn),求||MF1|-|NF1|| 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在高二年級(jí)開展了體育分項(xiàng)教學(xué)活動(dòng),將體育課分為大球(包括籃球、排球、足球)、小球(包括乒乓球、羽毛球)、田徑、體操四大項(xiàng)(以下簡(jiǎn)稱四大項(xiàng),并且按照這個(gè)順序).為體現(xiàn)公平,學(xué)校規(guī)定時(shí)間讓學(xué)生在電腦上選課,據(jù)初步統(tǒng)計(jì),在全年級(jí)980名同學(xué)中,有意申報(bào)四大項(xiàng)的人數(shù)之比為3:2:1:1,而實(shí)際上由于受多方面條件影響,最終確定的四大項(xiàng)人數(shù)必須控制在2:1:3:1,選課不成功的同學(xué)由電腦自動(dòng)調(diào)劑到田徑類.
(Ⅰ)隨機(jī)抽取一名同學(xué),求該同學(xué)選課成功(未被調(diào)劑)的概率;
(Ⅱ)某小組有五名同學(xué),有意申報(bào)四大項(xiàng)的人數(shù)分別為2、1、1、1,記最終確定到田徑類的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com