如圖,已知?jiǎng)又本經(jīng)過(guò)點(diǎn),交拋物線兩點(diǎn),坐標(biāo)原點(diǎn)的中點(diǎn),設(shè)直線的斜率分別為.

(1)證明:

(2)當(dāng)時(shí),是否存在垂直于軸的直線,被以為直徑的圓截得的弦長(zhǎng)為定值?若存在,請(qǐng)求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

解:(1)設(shè)直線方程為,與拋物線方程聯(lián)立可得:,

再設(shè)點(diǎn),則

所以,故-----(7分)

(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052514262301561927/SYS201205251429077812129136_DA.files/image011.png">,所以?huà)佄锞的方程為:記線段中點(diǎn)即圓心為,則圓的半徑,假設(shè)存在這樣的直線,記作若要滿(mǎn)足題意,只需為常數(shù)即可。--------(10分)

=

所以,時(shí),能保證為常數(shù),故存在這樣的直線滿(mǎn)足題意。-----(15分)

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知?jiǎng)又本l經(jīng)過(guò)點(diǎn)P(4,0),交拋物線y2=2ax(a>0)于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O是PQ的中點(diǎn),設(shè)直線AQ,BQ的斜率分別為k1,k2
(1)證明:k1+k2=0;
(2)當(dāng)a=2時(shí),是否存在垂直于x軸的直線l′,被以AP為直徑的圓截得的弦長(zhǎng)為定值?若存在,請(qǐng)求出直線l′的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省模擬題 題型:解答題

如圖,已知?jiǎng)又本l經(jīng)過(guò)點(diǎn)P(4,0),交拋物線y2=2ax(a>0)于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O是PQ的中點(diǎn),設(shè)直線AQ,BQ的斜率分別為k1,k2,
(1)證明:k1+k2=0;
(2)當(dāng)a=2時(shí),是否存在垂直于x軸的直線l′,被以AP為直徑的圓截得的弦長(zhǎng)為定值?若存在,請(qǐng)求出直線l′的方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年浙江省寧波市鄞州區(qū)高三3月適應(yīng)性考試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知?jiǎng)又本l經(jīng)過(guò)點(diǎn)P(4,0),交拋物線y2=2ax(a>0)于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O是PQ的中點(diǎn),設(shè)直線AQ,BQ的斜率分別為k1,k2
(1)證明:k1+k2=0;
(2)當(dāng)a=2時(shí),是否存在垂直于x軸的直線l′,被以AP為直徑的圓截得的弦長(zhǎng)為定值?若存在,請(qǐng)求出直線l′的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省寧波市鄞州區(qū)2011-2012學(xué)年高三高考適應(yīng)性考試(3月)數(shù)學(xué)(文)試題 題型:解答題

 如圖,已知?jiǎng)又本經(jīng)過(guò)點(diǎn),交拋物線兩點(diǎn),坐標(biāo)原點(diǎn)的中點(diǎn),設(shè)直線的斜率分別為.

(1)證明:

(2)當(dāng)時(shí),是否存在垂直于軸的直線,被以為直徑的圓截得的弦長(zhǎng)為定值?若存在,請(qǐng)求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案