若函數(shù)f(x)=,若f(a)>f(-a),則實數(shù)a的取值范圍是

[     ]

A、(-1,0)∪(0,1)
B、(-∞,-1)∪(1,+∞)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(0,1)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)定義:若存在常數(shù)k,使得對定義域D內(nèi)的任意兩個不同的實數(shù)x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,則稱f(x)在D上滿足利普希茨(Lipschitz)條件.
(1)試舉出一個滿足利普希茨(Lipschitz)條件的函數(shù)及常數(shù)k的值,并加以驗證;
(2)若函數(shù)f(x)=
x+1
在[1,+∞)
上滿足利普希茨(Lipschitz)條件,求常數(shù)k的最小值;
(3)現(xiàn)有函數(shù)f(x)=sinx,請找出所有的一次函數(shù)g(x),使得下列條件同時成立:
①函數(shù)g(x)滿足利普希茨(Lipschitz)條件;
②方程g(x)=0的根t也是方程f(
4
)=
2
sin(
2
-
π
4
)=-
2
cos
π
4
=-1
;
③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax3bx2cxd是奇函數(shù),且f(x)極小值f(-)=-.

(1)求函數(shù)f(x)的解析式;

(2)求函數(shù)f(x)在[-1,m](m>-1)上的最大值;

(3)設(shè)函數(shù)g(x)=,若不等式g(xg(2kx)≥(-k)2在(0,2k)上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三上學(xué)期期末模塊考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

下列命題:

(1)若函數(shù)為偶函數(shù),則;

(2)函數(shù)的周期T=;

(3)方程log6x=cosx有且只有三個實數(shù)根;

(4)對于函數(shù)f(x)=x2,

.以上命題為真命題的是        。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三第一次模擬考試理科數(shù)學(xué)卷 題型:解答題

(本小題滿分15分)

若函數(shù)f(x)=ax3+bx2+cx+d是奇函數(shù),且f(x)極小值=f(-)=-.

(1)求函數(shù)f(x)的解析式;

(2)求函數(shù)f(x)在[-1,m](m>-1)上的最大值;

(3)設(shè)函數(shù)g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求實數(shù)k的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案