若雙曲線的兩條漸近線的夾角為,則該雙曲線的離心率為(    )
A.2B.C.2或D.2或

D

首先根據(jù)題意要對焦點位置進行分類討論:第一種就是焦點在x軸上,這時;第二種就是焦點在y軸上,這時,故答案選D。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如下圖,已知△OFQ的面積為S,且·=1,

(1)若S的范圍為<S<2,求向量的夾角θ的取值范圍;
(2)設||=c(c≥2),S=c,若以O為中心,F為焦點的橢圓經(jīng)過點Q,當||取得最小值時,求此橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知雙曲線,焦點F2到漸近線的距離為,兩條準線之間的距離為1。  (I)求此雙曲線的方程;  (II)過雙曲線焦點F1的直線與雙曲線的兩支分別相交于A、B兩點,過焦點F2且與AB平行的直線與雙曲線分別相交于C、D兩點,若A、B、C、D這四點依次構(gòu)成平行四邊形ABCD,且,求直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標平面中,的兩個頂點的坐標分別為,平面內(nèi)兩點同時滿足下列條件:
;②;③
(1)求的頂點的軌跡方程;
(2)過點的直線與(1)中軌跡交于兩點,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)拋物線的頂點在原點,焦點在射線x-y+1=0
(1)求拋物線的標準方程
(2)過(1)中拋物線的焦點F作動弦AB,過A、B兩點分別作拋物線的切線,設其交點為M,求點M的軌跡方程,并求出的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線和橢圓有相同的焦點,兩曲線在第一象限內(nèi)的交點為,橢圓軸負半軸交于點,且三點共線,分有向線段的比為,又直線與雙曲線的另一交點為,若
(1)求橢圓的離心率;
(2)求雙曲線和橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩點M(-2,0)、N(2,0),點P為坐標平面內(nèi)的動點,滿足||||+ ·=0,求動點P(x,y)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=4x的焦點為F,過點F的直線l與C相交于兩點A、B.
(1)若|AB|=,求直線l的方程;
(2)求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線上點到定點和焦點的距離之和的最小值為,求此拋物線的方程.

查看答案和解析>>

同步練習冊答案