已知橢圓E的焦點在x軸上,離心率為數(shù)學公式,對稱軸為坐標軸,且經過點(1,數(shù)學公式).
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線y=kx-2與橢圓E相交于A,B兩點,在OA上存在一點M,OB上存在一點N,使得數(shù)學公式,若原點O在以MN為直徑的圓上,求直線斜率k的值.

解:(Ⅰ)依題意,可設橢圓E的方程為 ,
=,∴a=2c,又 b2=a2-c2=3c2,∵橢圓經過點(1,),
∴橢圓的方程為
(Ⅱ)記A、B 兩點坐標分別為A(x1,x2 ),B (x2,y2),
消去y,得 (4k2+3)x2-16kx+4=0,∵直線與橢圓有兩個交點,
∴△=(16k)2-16(4k2+3)>0,∴k2
由韋達定理 ,,∵原點O在以MN為直徑的圓上,
∴OM⊥ON,即 =0,∵,M在OA上,N在OB上,
=0,又 =(x1,y1 ),=(x2,y2 ),
=x1x2+y1y2=x1x2+(kx1-2)(kx2-2)
=(k2+1)x1x2-2k(x1+x2)+4=(k2+1)-2k+4=0.
∴k2=,∴k=±
分析:(Ⅰ)依題意設出橢圓E的方程,根據離心率的值以及橢圓經過點(1,),待定系數(shù)法求出橢圓的方程.
(Ⅱ)把直線的方程代入橢圓的方程,使用根與系數(shù)的關系,再利用OM⊥ON 及,
通過=0,解方程求出k的值.
點評:本題考查橢圓的簡單性質,用待定系數(shù)法求橢圓的方程,一元二次方程根與系數(shù)的關系,以及兩個向量坐標形式的運算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓E的焦點在x軸上,離心率為
1
2
,對稱軸為坐標軸,且經過點(1,
3
2
).
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線y=kx-2與橢圓E相交于A,B兩點,在OA上存在一點M,OB上存在一點N,使得
MA
=
1
2
AB
,若原點O在以MN為直徑的圓上,求直線斜率k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•深圳一模)已知橢圓E的焦點在x軸上,長軸長為4,離心率為
3
2

(Ⅰ)求橢圓E的標準方程;
(Ⅱ)已知點A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•貴州模擬)已知橢圓E的焦點在x軸上,離心率為
1
2
,對稱軸為坐標軸,且經過點(1,
3
2
)

(I)求橢圓E的方程;
(II)直線y=kx-2與橢圓E相交于A、B兩點,O為原點,在OA、OB上分別存在異于O點的點M、N,使得O在以MN為直徑的圓外,求直線斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知橢圓E的焦點在x軸上,長軸長為4,離心率為
3
2

(Ⅰ)求橢圓E的標準方程;
(Ⅱ)已知點A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年廣東省深圳市高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

已知橢圓E的焦點在x軸上,長軸長為4,離心率為
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)已知點A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案