橢圓的離心率e=_______。

答案:
解析:


提示:

橢圓的焦距與長軸長的比=e,叫做橢圓的離心率。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線
x
a
±
y
b
=0
稱為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的“特征直線”,若橢圓的離心率e=
3
2

(Ⅰ)求橢圓的“特征直線”方程;
(Ⅱ)過橢圓C上一點(diǎn)M(x0,y0)(x0≠0)作圓x2+y2=b2的切線,切點(diǎn)為P、Q,直線PQ與橢圓的“特征直線”相交于點(diǎn)E、F,O為坐標(biāo)原點(diǎn),若
OE
OF
取值范圍恰為(-∞,-3)∪[
3
16
,+∞)
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B兩點(diǎn).
(1)若橢圓的離心率為
3
3
,焦距為2,求橢圓方程;
(2)在(1)的條件下,求線段AB的長;
(3)若橢圓的離心率e∈(
2
2
,1)
,向量
OA
與向量
OB
互相垂直(其中O為坐標(biāo)原點(diǎn)),求橢圓的長軸的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(x,y)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的任意一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),且∠F1PF2≤90°,則該橢圓的離心率e的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的兩焦點(diǎn)將其長軸三等分,則橢圓的離心率e=
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長、短軸端點(diǎn)分別為A、B,從橢圓上一點(diǎn)M(在x軸上方)向x軸作垂線,恰好通過橢圓的左焦點(diǎn)F1
AB
OM

(1)求橢圓的離心率e;
(2)設(shè)Q是橢圓上任意一點(diǎn),F(xiàn)1、F2分別是左、右焦點(diǎn),求∠F1QF2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案