(文)已知,點滿足,記點的軌跡為E,
(1)、求軌跡E的方程;(5分)
(2)、如果過點Q(0,m)且方向向量為="(1,1)" 的直線l與點P的軌跡交于A,B兩點,當(dāng)時,求AOB的面積。(9分)

(1)P的軌跡是以(,0),(-,0)為焦點的橢圓
(2)

(文)解:(1)點P的軌跡方程為 (4分)
說明只出現(xiàn)(1分)
只出現(xiàn)點P的軌跡是以(,0),(-,0)為焦點的橢圓(2分)
(2)  依題意直線AB的方程為y=x+m.(1分) 
設(shè)A(),B()
代入橢圓方程,得,(1分)
   (1分)
(1+1=2分)
(1分)
因此=(1分)
=(1分)
=(1分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
已知點A(2,0),. P為上的動點,線段BP上的點M滿足|MP|=|MA|.
 �。á瘢┣簏cM的軌跡C的方程;
 �。á颍┻^點B(-2,0)的直線與軌跡C交于S、T兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面,直線l,點P∈l,平面間的距離為5,則在內(nèi)到點P的距離為13且到直線l的距離為的點的軌跡是(  )
A.一個圓B.四個點C.兩條直線D.雙曲線的一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則方程表示的曲線只可能是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
若一動點F到兩定點、的距離之和為4.
(Ⅰ)求動點F的軌跡方程;
(Ⅱ)設(shè)動點F的軌跡為曲線C,在曲線C任取一點P,過點P作軸的垂線段PD,D為垂足,當(dāng)P在曲線C上運(yùn)動時,線段PD的中點M的軌跡是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如右圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月
球附近一點P變軌進(jìn)入以月球球心F為一個焦點的橢圓軌道Ⅰ繞月飛
行,之后衛(wèi)星在P點第二次變軌進(jìn)入仍以F為一個焦點的橢圓軌道Ⅱ
繞月飛行,最終衛(wèi)星在P點第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ
繞月飛行,若用分別表示橢軌道Ⅰ和Ⅱ的焦距,用
分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:
 ②�、�    ④.
其中正確式子的序號是 (    )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知與曲線y軸于
為原點。
(1)求證:;
(2)求線段AB中點的軌跡方程;
(3)求△AOB面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,已知拋物線的焦點為,是拋物線上橫坐標(biāo)為8且位于軸上方的點. 到拋物線準(zhǔn)線的距離等于10,過垂直于軸,垂足為,的中點為為坐標(biāo)原點).
(Ⅰ)求拋物線的方程;
(Ⅱ)過,垂足為,求點的坐標(biāo);
(Ⅲ)以為圓心,4為半徑作圓,點軸上的一個動點,試討論直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、已知直線與曲線相交于兩點,若,求的值.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�