【題目】已知,分別為雙曲線的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是________

【答案】

【解析】

依題意,雙曲線左支上存在一點P使得8a,|PF1||PF2|=﹣2a,可求得,|PF1|2a|PF2|4a,再利用|PF1|、|F1F2|、|PF2|之間的關(guān)系即可求得雙曲線的離心率的取值范圍.

P為雙曲線左支上一點,

|PF1||PF2|=﹣2a,

|PF2||PF1|+2a,

8a,

∴由①②可得,|PF1|2a,|PF2|4a

|PF1|+|PF2||F1F2|,即2a+4a2c,

3,

|PF1|+|F1F2||PF2|

2a+2c4a,

1

③④可得13

故答案為:(13]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是定義在R上的奇函數(shù),且當(dāng)x0時,fx)=x2+2x.現(xiàn)已畫出函數(shù)fx)在y軸左側(cè)的圖象如圖所示,

(1)畫出函數(shù)fx),xR剩余部分的圖象,并根據(jù)圖象寫出函數(shù)fx),xR的單調(diào)區(qū)間;(只寫答案)

2)求函數(shù)fx),xR的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

表中 ,

(Ⅰ)根據(jù)散點圖判斷,y=a+bx與y=c+d哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)

(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

(Ⅲ)已知這種產(chǎn)品的年利潤z與x、y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:

(ⅰ)年宣傳費x=49時,年銷售量及年利潤的預(yù)報值是多少?

(ⅱ)年宣傳費x為何值時,年利潤的預(yù)報值最大?

附:對于一組數(shù)據(jù),,……,,其回歸線的斜率和截距的最小二乘估計分別為:

46.6

563

6.8

289.8

1.6

1469

108.8

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實數(shù)的取值范圍;

(2)已知關(guān)于的方程有兩個實根,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊甲、乙兩名運動員練習(xí)罰球,每人練習(xí)10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結(jié)論中錯誤的一個是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小張經(jīng)營某一消費品專賣店,已知該消費品的進價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費用為每月10000元.

(1)把y表示為x的函數(shù);

(2)當(dāng)銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數(shù);

(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校因為寒假延期開學(xué),根據(jù)教育部停課不停學(xué)的指示,該學(xué)校組織學(xué)生線上教學(xué),高一年級在線上教學(xué)一個月后,為了了解線上教學(xué)的效果,在線上組織了數(shù)學(xué)學(xué)科考試,隨機抽取50名學(xué)生的成績并制成頻率分布直方圖如圖所示.

1)求m的值,并估計高一年級所有學(xué)生數(shù)學(xué)成績在分的學(xué)生所占的百分比;

2)分別估計這50名學(xué)生數(shù)學(xué)成績的平均數(shù)和中位數(shù).(同一組中的數(shù)據(jù)以該組區(qū)間的中點值作代表,結(jié)果精確到0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時,可全部租出,當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護費150元,未租出的車每輛每月需要維護費50元。

1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項為,且, .

(1)求證:數(shù)列是等差數(shù)列;

(2)設(shè),求數(shù)列的前項和.

查看答案和解析>>

同步練習(xí)冊答案