精英家教網 > 高中數學 > 題目詳情

【題目】某單位對員工業(yè)務進行考核,從類員工(工作3年及3年以內的員工)類員工(工作3年以上的員工)的成績中各抽取15個,具體數據如下:

類成績:20 10 22 30 15 12 41 22 31 25 12 26 29 32 33

類成績:21 40 30 41 42 31 49 51 52 43 47 47 32 45 48

1)根據兩組數據完成兩類員工成績的莖葉圖,并通過莖葉圖比較兩類員工成績的平均值及分散程度(不要求計算出具體值,得出結論即可);

2)研究發(fā)現從業(yè)時間與業(yè)務能力之間具有線性相關關系,從上述抽取的名員工中抽取4名員工的成績如下:

員工工作時間(單位年)

1

2

3

4

考核成績

10

15

20

30

根據四個的數據,求關于的線性回歸方程.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,

【答案】1B員工成績的平均值大于A員工成績的平均值,B員工成績集中,A員工成績分散;(2

【解析】

1)根據所給數據,即可求得莖葉圖,根據莖葉圖可估計兩類員工成績的平均值及分散程度;

2)根據所給數據求得:,,求得,即可求得線性回歸方程.

1)根據所給數據,可得莖葉圖,如圖:

根據莖葉圖可得:員工成績的平均值大于員工成績的平均值,

員工成績集中,員工成績分散

2)根據所給數據可得:,,

,

可得:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上的點到準線的最小距離為2.

1)求拋物線的方程;

2)若過點作互相垂直的兩條直線,,與拋物線交于,兩點,與拋物線交于,兩點,分別為弦,的中點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數學、外語三科為必考科目,滿分各150分,另外考生還要依據想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應對新高考,某高中從高一年級1000名學生(其中男生550人,女生450人)中,根據性別分層,采用分層抽樣的方法從中抽取100名學生進行調查.

(1)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對抽取到的100名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),如表是根據調查結果得到的列聯表.請將列聯表補充完整,并判斷是否有的把握認為選擇科目與性別有關?說明你的理由;

(2)在抽取到的女生中按(1)中的選課情況進行分層抽樣,從中抽出9名女生,再從這9名女生中隨機抽取4人,設這4人中選擇“地理”的人數為,求的分布列及數學期望.

選擇“物理”

選擇“地理”

總計

男生

10

女生

25

總計

附參考公式及數據:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲乙兩名同學參加定點投籃測試,已知兩人投中的概率分別是,假設兩人投籃結果相互沒有影響,每人各次投球是否投中也沒有影響.

(Ⅰ)若每人投球3次(必須投完),投中2次或2次以上,記為達標,求甲達標的概率;

(Ⅱ)若每人有4次投球機會,如果連續(xù)兩次投中,則記為達標.達標或能斷定不達標,則終止投籃.記乙本次測試投球的次數為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國式過馬路存在很大的交通安全隱患,某調查機構為了解路人對中國式過馬路的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如圖的列聯表.已知在這30人中隨機抽取1人抽到反感中國式過馬路的路人的概率是

1)求列聯表中的的值;

男性

女性

合計

反感

10

不反感

8

合計

30

2)根據列聯表中的數據,判斷是否有95%把握認為反感中國式過馬路與性別有關?

臨界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)采用新工藝,把企業(yè)生產中排放的二氧化碳轉化為一種可利用的化工產品.已知該單位每月的處理量最少為噸,最多為噸,月處理成本(元)與月處理量(噸)之間的函數關系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產品價值為.

1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?

2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,是棱的中點.

(1)證明:平面;

(2)若是棱的中點,求三棱錐的體積與三棱柱的體積之比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】新聞出版業(yè)不斷推進供給側結構性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質出口產品供給,實現了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數字出版業(yè)營收增長情況,則下列說法錯誤的是( )

A. 2012年至2016年我國新聞出版業(yè)和數字出版業(yè)營收均逐年增加

B. 2016年我國數字出版業(yè)營收超過2012年我國數字出版業(yè)營收的2倍

C. 2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍

D. 2016年我國數字出版營收占新聞出版營收的比例未超過三分之一

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形是某生態(tài)農莊的一塊植物栽培基地的平面圖,現欲修一條筆直的小路(寬度不計)經過該矩形區(qū)域,其中都在矩形的邊界上.已知,(單位:百米),小路將矩形分成面積分別為,(單位:平方百米)的兩部分,其中,且點在面積為的區(qū)域內,記小路的長為百米.

1)若,求的最大值;

2)若,求的取值范圍.

查看答案和解析>>

同步練習冊答案